CAPT and Atmospheric (Climate Change Prediction Radiation Measurement Program Program (CCPP-ARM) Parameterization Testbed) has been a valu- able tool to assess climate models in recent years, and the Tropical Warm...CAPT and Atmospheric (Climate Change Prediction Radiation Measurement Program Program (CCPP-ARM) Parameterization Testbed) has been a valu- able tool to assess climate models in recent years, and the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) has collected comprehensive measurements to verify its physical parameterizations. The present study evaluates the performances of the two GAMIL (grid-point atmospheric model of lAP LASG) versions during TWP-ICE using CAPT. The results indicate that GAMIL2.0 reproduced better shifts of clouds and rainfall during three distinct monsoon phases than GAMIL1.0, although both of them simulated the large-scale dynamical states well, which are mainly attributable to the different convective parameterizations.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(f...Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.展开更多
With the high focus on autonomous aerial refueling(AAR), it becomes increasingly urgent to design efficient methods or algorithms for solving the AAR problems in complicated aerial environments. A vision-based technol...With the high focus on autonomous aerial refueling(AAR), it becomes increasingly urgent to design efficient methods or algorithms for solving the AAR problems in complicated aerial environments. A vision-based technology for AAR is developed in this paper, and five monocular and binocular visual algorithms for pose estimation of the unmanned aerial vehicles(UAVs) are adopted and verified in this AAR system. The real-time on-board vision system is also designed for precise navigation in the UAVs docking phase. A series of out-door comparative experiments for different pose estimation algorithms are conducted to verify the feasibility and accuracy of the vision algorithms in AAR.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-04)the National High Technology Research and Development Program of China (863 Program,Grant No. 2010AA012304)+2 种基金the National Basic Research Program of China (973 Program, Grant No. 2010CB951904)the Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDA05110304)the National Natural Science Foundation of China (Grant Nos. 41023002 and 41005053)
文摘CAPT and Atmospheric (Climate Change Prediction Radiation Measurement Program Program (CCPP-ARM) Parameterization Testbed) has been a valu- able tool to assess climate models in recent years, and the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) has collected comprehensive measurements to verify its physical parameterizations. The present study evaluates the performances of the two GAMIL (grid-point atmospheric model of lAP LASG) versions during TWP-ICE using CAPT. The results indicate that GAMIL2.0 reproduced better shifts of clouds and rainfall during three distinct monsoon phases than GAMIL1.0, although both of them simulated the large-scale dynamical states well, which are mainly attributable to the different convective parameterizations.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
文摘Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61425008,61333004&61273054)the Aeronautical Foundation of China(Grant No.2015ZA51013)
文摘With the high focus on autonomous aerial refueling(AAR), it becomes increasingly urgent to design efficient methods or algorithms for solving the AAR problems in complicated aerial environments. A vision-based technology for AAR is developed in this paper, and five monocular and binocular visual algorithms for pose estimation of the unmanned aerial vehicles(UAVs) are adopted and verified in this AAR system. The real-time on-board vision system is also designed for precise navigation in the UAVs docking phase. A series of out-door comparative experiments for different pose estimation algorithms are conducted to verify the feasibility and accuracy of the vision algorithms in AAR.