Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S...Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.展开更多
The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy o...The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.展开更多
The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission e...The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.展开更多
The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic stru...The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic structure of Ni/Ni3Nb (001) interfaces were calculated to expound the influence of atom termination and stacking sequence on the interface strength and stability. Simulated results indicate that Ni and Ni3Nb (001) surface models with more than eight atomic layers exhibit bulk-like interior. The (Ni+Nb)-terminated interface with hollow site stacking has the largest cohesive strength and critical stress for crack propagation and the best thermal stability among the four models. This interfacial Ni and the first nearest neighbor Nb atoms form covalent bonds across the interface region, which are mainly contributed by Nb 4d and Ni 3d valence electrons. By comparison, the thermal stability of Ni/Ni3Nb (001) interfaces is worse than Ni/Ni3A1 (001) interface, implying that the former is harder to form. But the Ni/Ni3Nb interface can improve the mechanical properties ofNi-based superalloys.展开更多
In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus bou...First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.展开更多
Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-T...Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.展开更多
基金supported by the National Natural Science Foundation of China (21263015)the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province(20151BBE50006,20122BAB203009)~~
文摘Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.
基金Project supported by the High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),ChinaProjects(51304054+1 种基金51364002)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of Guangxi Colleges and University Key Laboratory of Minerals Engineering in Guangxi University,China
文摘The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.
基金Project(2012CB619506)supported by the National Basic Research Program of ChinaProject(51071177)supported by the National Natural Science Foundation of China
文摘The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.
基金Project(2011DFA50520)supported by International Cooperation Project Supported by Ministry of Science and Technology of ChinaProjects(51204147,51274175)supported by the National Natural Science Foundation of China+1 种基金Projects(2011-key6,2013-81)supported by Research Project Supported by Shanxi Scholarship Council of ChinaProjects(2013081017,2012081013)supported by International Cooperation Project Supported by Shanxi Province,China
文摘The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic structure of Ni/Ni3Nb (001) interfaces were calculated to expound the influence of atom termination and stacking sequence on the interface strength and stability. Simulated results indicate that Ni and Ni3Nb (001) surface models with more than eight atomic layers exhibit bulk-like interior. The (Ni+Nb)-terminated interface with hollow site stacking has the largest cohesive strength and critical stress for crack propagation and the best thermal stability among the four models. This interfacial Ni and the first nearest neighbor Nb atoms form covalent bonds across the interface region, which are mainly contributed by Nb 4d and Ni 3d valence electrons. By comparison, the thermal stability of Ni/Ni3Nb (001) interfaces is worse than Ni/Ni3A1 (001) interface, implying that the former is harder to form. But the Ni/Ni3Nb interface can improve the mechanical properties ofNi-based superalloys.
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
基金Project(51171211)supported by the National Natural Science Foundation of ChinaProject(2014CB644001-2)supported by the National Basic Research Program of China
文摘First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.
基金supported by the National Natural Science Foundation of China(21878143,21476106,21838004)Joint Re-search Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601)+1 种基金the fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.