The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy o...The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.展开更多
The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission e...The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.展开更多
The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic stru...The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic structure of Ni/Ni3Nb (001) interfaces were calculated to expound the influence of atom termination and stacking sequence on the interface strength and stability. Simulated results indicate that Ni and Ni3Nb (001) surface models with more than eight atomic layers exhibit bulk-like interior. The (Ni+Nb)-terminated interface with hollow site stacking has the largest cohesive strength and critical stress for crack propagation and the best thermal stability among the four models. This interfacial Ni and the first nearest neighbor Nb atoms form covalent bonds across the interface region, which are mainly contributed by Nb 4d and Ni 3d valence electrons. By comparison, the thermal stability of Ni/Ni3Nb (001) interfaces is worse than Ni/Ni3A1 (001) interface, implying that the former is harder to form. But the Ni/Ni3Nb interface can improve the mechanical properties ofNi-based superalloys.展开更多
First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus bou...First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.展开更多
We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sa...We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sandwich and the surface models.Energetics calculations showed that the interface binding strength only weakly depends on interface coordination.Both interface models predicted the top-fcc coordination type as the most energy-favored,with a low binding energy value.Segregated Cr prefers to substituting for Cu, while Ti occupies a hollow site at the interface.Although the segregation tendencies are both very weak,once present on the interface,both dopants can greatly increase the interface binding energy and improve the adhesion.展开更多
We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on G...We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on Ga atom is the most stable defect for both ultrathin and large size GaAs nanowires. It can form the trap centers of holes and then prefer to capture the holes from p-type doping. Thus it could obviously reduce the efficiency of the p-type doping. We also found that the NO2 molecule is electronegative enough to capture the unpaired electrons of surface dangling bonds, which is an ideal passivation material for the Zn-doped GaAs nanowires.展开更多
The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties i...The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties indicate that bonding nature in TiC is a combination of ionicity,covalency and metallicity,in which the Ti-C covalent bonding is the predominate one.The calculated results of structural relaxation and surface energy for TiC(001) slab indicate that slab with 7 layers shows bulk-like characteristic interiors,and the changes of slab occur on the outmost three layers,which shows that the relaxation only influences the top three layers.Meanwhile,the strong Ti-C covalent bonding can be found in the distribution of charge density on the (110) and (001) planes.Ti-C covalent bonding is enhanced by the charge depletion and accumulation in the vacuum and the interlayer region between top two atomic layers.展开更多
Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bon...Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bonding using an in-situ formed intermediate MgO layer.The calculated interface adhesion strengths suggested a relative ordering(from high to low)of Mg(0001)/MgO(11−1)>MgO(11−1)/graphene>Mg(0001)/graphene.The enhanced Mg/MgO/graphene interface bonding can be attributed to the newly formed strong ionic and covalent interactions at the Mg/MgO and the MgO/graphene interfaces,respectively,which replace the otherwise very weak van der Waals bonding between Mg and graphene.展开更多
The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of st...The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of structural relaxation and surface energy for TiC(110) slab indicate that slab with 7 layers shows bulk-like characteristic interiors, and the changes of slab occur on the outmost three layers, which shows that the relaxation only influences the top three layers. Meanwhile, the strong Ti—C covalent bonding can be found in the distribution of charge density on the (100) plane. The interlayer Ti—C chemical bonds are reinforced and the outermost interlayer distance is reduced as a result of the charge depletion in the vacuum and the charge accumulations in the interlayer region between the first and second layers. The surface energy of TiC(110) is calculated to be 3.53 J/m2.展开更多
The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers ...The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.展开更多
Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorpti...Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorptive positions in energy, and methanol molecule interacts with the Pt surface through oxygen atoms. Moreover, we also explored the possible dissociation pathways of methanol on the Pt surface, and suggested that the products of dissociation can be controlled by the external manipulation.展开更多
We have investigated the adsorption of nine different adatoms on the(111)and(100)surfaces of Iridium(Ir)using first principles density functional theory.The study explores surface functionalization of Ir which would p...We have investigated the adsorption of nine different adatoms on the(111)and(100)surfaces of Iridium(Ir)using first principles density functional theory.The study explores surface functionalization of Ir which would provide important information for further study of its functionality in catalysis and other surface applications.The adsorption energy,stable geometry,density of states and magnetic moment are some of the physical quantities of our interest.The study reveals that the three-/four-fold hollow site is energetically the most favorable adsorption site on the(111)/(100)surface of Ir.The investigation on a wide range of coverages(from 0.04 to 1 monolayer)reveals the strong coverage dependence of adsorption energy of the adsorbate atoms.The adsorption energy is found to increase as the coverage increases,implying a repulsive interaction between the adsorbates.Strong hybridization between the adsorbates and the substrate electronic states is revealed to impact the adsorption,while the magnetic moment of the adsorbates is found to be suppressed.The Bader analysis reveals significant amount of charge transfers between the adsorbate atoms and the substrate.The binding of adsorbate atoms on the(100)surface is observed to be moderately stronger as compared to that on the(111)surface.展开更多
First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated resu...First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.展开更多
Density functional theory calculations corrected by on-site Coulomb interactions were carried out o study the structures of polar CeO2 (100) surfaces as well as activities during catalytic CO oxidation. The stabilit...Density functional theory calculations corrected by on-site Coulomb interactions were carried out o study the structures of polar CeO2 (100) surfaces as well as activities during catalytic CO oxidation. The stabilities of various CeO2 (100) termination structures are discussed, and calculated energetics are presented. The most stable Ce〇2 (100) surface was obtained by removing half the outermost full layer of oxygen and the surface stability was found to decrease as the exposed oxygen concentration was increased. Assessing the reaction pathways leading to different final products during CO oxidation over the most stable CeO2 (100) surface, we determined that the formation of carbonate species competed with CO2 desorption. However, during CO oxidation on the less stable CeO2 (100) surfaces having more exposed oxygen, the CO is evidently able to react with surface oxygen, leading to CO2 formation and desorption. The calculation results and electronic analyses reported herein also indicate that the characteristic Ce 4/ orbitals are directly involved in deter-mining the surface stabilities and reactivities.展开更多
Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic str...Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.展开更多
Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and c...Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(lll) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC (001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(lll) when compared to Ni(111). the N recombination barrier by modifying To design cheaper and better catalysts, reducing Ni/WC(001) is a critical question to be solved.展开更多
Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the n...Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the nowadays first-principles theory due to the lack of proper exchange-correlation functional describing the distinct interactions involved. We studied here the potential energy surfaces of ethylene adsorption on Ag(111), Rh(111) and Ir(111) using density functional theory calculations and (meta)-GGA functional including PBE, BEEF-vdW, SCAN, and SCAN+rVV10. For ethylene adsorption on noble metal Ag(111), it is found that BEEF-vdW, SCAN and SCAN+rVV10 predict the presence of the physisorption states only. For Rh(111), both SCAN and SCAN+rVV10 find that there is a precursor physisorption state before the chemisorption state. In contrast, there is no precursor state found based on potential energy surfaces from BEEF-vdW and PBE. Whereas for Ir(111), BEEF-vdW predicts the existence of a rather shallow precursor physisorption state, in addition to the chemisorption state. Irrespective to the transition metals considered, we find that SCAN+rVV10 gives the strongest binding strength, followed by SCAN, and PBE/BEEF-vdW, accordingly. The present work highlights great dependence of potential energy surface of ethylene adsorption on transition metal surfaces and exchange-correlation functionals.展开更多
We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculati...We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In 〉 1 (N-rich), and N/In 〈 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.展开更多
The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures o...The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.展开更多
基金Project supported by the High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),ChinaProjects(51304054+1 种基金51364002)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of Guangxi Colleges and University Key Laboratory of Minerals Engineering in Guangxi University,China
文摘The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.
基金Project(2012CB619506)supported by the National Basic Research Program of ChinaProject(51071177)supported by the National Natural Science Foundation of China
文摘The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.
基金Project(2011DFA50520)supported by International Cooperation Project Supported by Ministry of Science and Technology of ChinaProjects(51204147,51274175)supported by the National Natural Science Foundation of China+1 种基金Projects(2011-key6,2013-81)supported by Research Project Supported by Shanxi Scholarship Council of ChinaProjects(2013081017,2012081013)supported by International Cooperation Project Supported by Shanxi Province,China
文摘The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic structure of Ni/Ni3Nb (001) interfaces were calculated to expound the influence of atom termination and stacking sequence on the interface strength and stability. Simulated results indicate that Ni and Ni3Nb (001) surface models with more than eight atomic layers exhibit bulk-like interior. The (Ni+Nb)-terminated interface with hollow site stacking has the largest cohesive strength and critical stress for crack propagation and the best thermal stability among the four models. This interfacial Ni and the first nearest neighbor Nb atoms form covalent bonds across the interface region, which are mainly contributed by Nb 4d and Ni 3d valence electrons. By comparison, the thermal stability of Ni/Ni3Nb (001) interfaces is worse than Ni/Ni3A1 (001) interface, implying that the former is harder to form. But the Ni/Ni3Nb interface can improve the mechanical properties ofNi-based superalloys.
基金Project(51171211)supported by the National Natural Science Foundation of ChinaProject(2014CB644001-2)supported by the National Basic Research Program of China
文摘First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.
基金Project(2018YFE0306100) supported by the National MCF Energy R&D Program of China
文摘We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sandwich and the surface models.Energetics calculations showed that the interface binding strength only weakly depends on interface coordination.Both interface models predicted the top-fcc coordination type as the most energy-favored,with a low binding energy value.Segregated Cr prefers to substituting for Cu, while Ti occupies a hollow site at the interface.Although the segregation tendencies are both very weak,once present on the interface,both dopants can greatly increase the interface binding energy and improve the adhesion.
基金This work was supported by the National Basic Research Program of China (No.2010CB327600), the National Natural Science Foundation of China (No.61020106007 and No.61376019), the Natural Science Foundation of Beijing (No.4142038), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20120005110011), and the 111 Program of China (No.B07005). Jian-gong Cui would like to thank Dr. Xin Yan and Dr. Jun-shuai Li from Beijing University of Posts and Telecommunications for useful discussions.
文摘We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on Ga atom is the most stable defect for both ultrathin and large size GaAs nanowires. It can form the trap centers of holes and then prefer to capture the holes from p-type doping. Thus it could obviously reduce the efficiency of the p-type doping. We also found that the NO2 molecule is electronegative enough to capture the unpaired electrons of surface dangling bonds, which is an ideal passivation material for the Zn-doped GaAs nanowires.
基金Project(200802015) supported by Post-doctoral Foundation of Shandong Province,ChinaProject(50625101) supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties indicate that bonding nature in TiC is a combination of ionicity,covalency and metallicity,in which the Ti-C covalent bonding is the predominate one.The calculated results of structural relaxation and surface energy for TiC(001) slab indicate that slab with 7 layers shows bulk-like characteristic interiors,and the changes of slab occur on the outmost three layers,which shows that the relaxation only influences the top three layers.Meanwhile,the strong Ti-C covalent bonding can be found in the distribution of charge density on the (110) and (001) planes.Ti-C covalent bonding is enhanced by the charge depletion and accumulation in the vacuum and the interlayer region between top two atomic layers.
基金the financial supports from the National Natural Science Foundation of China(Nos.52061028,52061039,51971249,51761037)the Natural Science Foundation of Jiangxi Province,China(No.2020BABL204002)+1 种基金the Interdisciplinary Innovation Fund of Nanchang University(IIFNCU),China(No.9166-27060003-ZD05)the Innovative Funding for Graduate Students in Nanchang University,China(No.CX2019068).
文摘Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bonding using an in-situ formed intermediate MgO layer.The calculated interface adhesion strengths suggested a relative ordering(from high to low)of Mg(0001)/MgO(11−1)>MgO(11−1)/graphene>Mg(0001)/graphene.The enhanced Mg/MgO/graphene interface bonding can be attributed to the newly formed strong ionic and covalent interactions at the Mg/MgO and the MgO/graphene interfaces,respectively,which replace the otherwise very weak van der Waals bonding between Mg and graphene.
基金Project (200902554) supported by National Post-doctor Foundation, ChinaProject (200802015) supported by the Post-Doctor Foundation of Shandong Province, China
文摘The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of structural relaxation and surface energy for TiC(110) slab indicate that slab with 7 layers shows bulk-like characteristic interiors, and the changes of slab occur on the outmost three layers, which shows that the relaxation only influences the top three layers. Meanwhile, the strong Ti—C covalent bonding can be found in the distribution of charge density on the (100) plane. The interlayer Ti—C chemical bonds are reinforced and the outermost interlayer distance is reduced as a result of the charge depletion in the vacuum and the charge accumulations in the interlayer region between the first and second layers. The surface energy of TiC(110) is calculated to be 3.53 J/m2.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11074233) the National Basic Research Program of China (No.2012CB215405), and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110038).
文摘The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.
文摘Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorptive positions in energy, and methanol molecule interacts with the Pt surface through oxygen atoms. Moreover, we also explored the possible dissociation pathways of methanol on the Pt surface, and suggested that the products of dissociation can be controlled by the external manipulation.
基金supported by the National Natural Science Foundation of China(No.11750110415,No.11474246,and No.11774178)the Natural Science Foundation of Jiangsu Province(BK20160061)。
文摘We have investigated the adsorption of nine different adatoms on the(111)and(100)surfaces of Iridium(Ir)using first principles density functional theory.The study explores surface functionalization of Ir which would provide important information for further study of its functionality in catalysis and other surface applications.The adsorption energy,stable geometry,density of states and magnetic moment are some of the physical quantities of our interest.The study reveals that the three-/four-fold hollow site is energetically the most favorable adsorption site on the(111)/(100)surface of Ir.The investigation on a wide range of coverages(from 0.04 to 1 monolayer)reveals the strong coverage dependence of adsorption energy of the adsorbate atoms.The adsorption energy is found to increase as the coverage increases,implying a repulsive interaction between the adsorbates.Strong hybridization between the adsorbates and the substrate electronic states is revealed to impact the adsorption,while the magnetic moment of the adsorbates is found to be suppressed.The Bader analysis reveals significant amount of charge transfers between the adsorbate atoms and the substrate.The binding of adsorbate atoms on the(100)surface is observed to be moderately stronger as compared to that on the(111)surface.
基金Project(51164001)supported by the National Natural Science Foundation of China
文摘First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.
基金supported the National Natural Science Foundation of China(21421004,21573067)~~
文摘Density functional theory calculations corrected by on-site Coulomb interactions were carried out o study the structures of polar CeO2 (100) surfaces as well as activities during catalytic CO oxidation. The stabilities of various CeO2 (100) termination structures are discussed, and calculated energetics are presented. The most stable Ce〇2 (100) surface was obtained by removing half the outermost full layer of oxygen and the surface stability was found to decrease as the exposed oxygen concentration was increased. Assessing the reaction pathways leading to different final products during CO oxidation over the most stable CeO2 (100) surface, we determined that the formation of carbonate species competed with CO2 desorption. However, during CO oxidation on the less stable CeO2 (100) surfaces having more exposed oxygen, the CO is evidently able to react with surface oxygen, leading to CO2 formation and desorption. The calculation results and electronic analyses reported herein also indicate that the characteristic Ce 4/ orbitals are directly involved in deter-mining the surface stabilities and reactivities.
基金This work is supported by the National Key Basic Research Program (No.2014CB921101), the National Natural Science Foundation of China (No.21503149, No.21273208, and No.21473168), the PhD foundation of Tianjin Normal University (No.52XBI408), and the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology. Jing Huang thanks the Natural Science Foundation of the Anhui Higher Education Institutions (No.KJ2016A144) and the Natural Science Foundation of Anhui Province (No.1408085QB26). Computational resources have been provided by CAS, Shanghai and USTC Supercomputer Centers.
文摘Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.
文摘Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(lll) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC (001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(lll) when compared to Ni(111). the N recombination barrier by modifying To design cheaper and better catalysts, reducing Ni/WC(001) is a critical question to be solved.
基金supported by the National Key R&D Program of China (No.2017YFB0602205 and No.2018YFA0208603)the National Natural Science Foundation of China (No.91645202)the Chinese Academy of Sciences (No.QYZDJ-SSW-SLH054)
文摘Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the nowadays first-principles theory due to the lack of proper exchange-correlation functional describing the distinct interactions involved. We studied here the potential energy surfaces of ethylene adsorption on Ag(111), Rh(111) and Ir(111) using density functional theory calculations and (meta)-GGA functional including PBE, BEEF-vdW, SCAN, and SCAN+rVV10. For ethylene adsorption on noble metal Ag(111), it is found that BEEF-vdW, SCAN and SCAN+rVV10 predict the presence of the physisorption states only. For Rh(111), both SCAN and SCAN+rVV10 find that there is a precursor physisorption state before the chemisorption state. In contrast, there is no precursor state found based on potential energy surfaces from BEEF-vdW and PBE. Whereas for Ir(111), BEEF-vdW predicts the existence of a rather shallow precursor physisorption state, in addition to the chemisorption state. Irrespective to the transition metals considered, we find that SCAN+rVV10 gives the strongest binding strength, followed by SCAN, and PBE/BEEF-vdW, accordingly. The present work highlights great dependence of potential energy surface of ethylene adsorption on transition metal surfaces and exchange-correlation functionals.
基金Supported by the National Basic Research Program of China under Grant No. 2006CB921607the National Natural Science Foundation of China under Grant Nos. 60711120203, 60890193+1 种基金the Natural Science Foundation of Beijing City under Grant No. 1092007the Science and Technology Research Foundation for Colleges and Universities of Inner Mongolia Autonomous Region under Grant No. NJ09026
文摘We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In 〉 1 (N-rich), and N/In 〈 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.
文摘The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.