To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the o...To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.展开更多
A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means o...A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.展开更多
This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population an...This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder-Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.展开更多
基金funded by the National Natural Science Foundations of China(Nos.12272176,U2037603).
文摘To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.
基金Project (ZYGX2010J119)supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.
基金the National Natural Science Foundation of China (No. 10671029).
文摘This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder-Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.