Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the sit...Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.展开更多
Using time-resolved techniques of 337 and 248 nm laser flash photolysis, the photo physical and photochemical processes of riboflavin (RF, vitamin B2) were studied in detail in aqueous solution. The excited triplet st...Using time-resolved techniques of 337 and 248 nm laser flash photolysis, the photo physical and photochemical processes of riboflavin (RF, vitamin B2) were studied in detail in aqueous solution. The excited triplet state of riboflavin (3RF*) was produced with 337 nm laser, while under 248 nm irradiation, both3RF* and hydrated electron (eaq) formed from photoionization could be detected. Photobiological implications have been inferred on the basis of reactivity of3RF* including energy transfer, electron transfer and hydrogen abstraction. The RF·+ was generated by oxidation of SO4 ·-radical with the aim of confirming the results of photolysis.展开更多
An effective action for Bose-Hubbard model with two-and three-body on-site interaction in a square optical lattice is derived in the frame of a strong-coupling approach developed by Sengupta and Dupuis.From this effec...An effective action for Bose-Hubbard model with two-and three-body on-site interaction in a square optical lattice is derived in the frame of a strong-coupling approach developed by Sengupta and Dupuis.From this effective action,superfluid-Mott insulator(MI) phase transition,excitation spectrum and momentum distribution for two phases are calculated by taking into account Gaussian fluctuation about the saddle-point approximation.In addition the effects of three-body interaction are also discussed.展开更多
文摘Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.
基金the National Natural Science Foundation of China (Grant No. 39830090).
文摘Using time-resolved techniques of 337 and 248 nm laser flash photolysis, the photo physical and photochemical processes of riboflavin (RF, vitamin B2) were studied in detail in aqueous solution. The excited triplet state of riboflavin (3RF*) was produced with 337 nm laser, while under 248 nm irradiation, both3RF* and hydrated electron (eaq) formed from photoionization could be detected. Photobiological implications have been inferred on the basis of reactivity of3RF* including energy transfer, electron transfer and hydrogen abstraction. The RF·+ was generated by oxidation of SO4 ·-radical with the aim of confirming the results of photolysis.
基金Supported by National Natural Science Foundation of China under Grant No. 11275108Foundation of Yancheng Institute of Technology under Grant No. XKR2010007
文摘An effective action for Bose-Hubbard model with two-and three-body on-site interaction in a square optical lattice is derived in the frame of a strong-coupling approach developed by Sengupta and Dupuis.From this effective action,superfluid-Mott insulator(MI) phase transition,excitation spectrum and momentum distribution for two phases are calculated by taking into account Gaussian fluctuation about the saddle-point approximation.In addition the effects of three-body interaction are also discussed.