OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory ef...OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory effect of As2O3 on HepG2 cells at various As2O3 concentrations. The expression of p-JNK, caspase-3 and PARP was detected by Western blots. RESULTS As2O3 markedly inhibited the growth of the HepG2 cells and induced apoptosis. The results of Western blot analysis showed that the As2O3-induced apoptosis was accompanied by caspase-3 and PARP activation. p-JNK was detected at 10 min following As2O3 treatment, and preceded to peak at 20 min, and decreased by 30 min. The total protein content did not obviously change. The activation of JNK occurred prior to cell apoptosis. SP600125, a JNK inhibitor, suppressed the As2O3-induced activation of caspase-3 and PARP cleavage. CONCLUSION As2O3 inhibits the proliferation of human HepG2 hepatocellular carcinoma cells by inducing apoptosis in vitro. As2O3-induced apoptosis is accessed through the caspase-3 pathway. The JNK signal-transduction pathway and caspase-3 are involved upstream in the As2O3 induced HepG2 apoptotic response.展开更多
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste...Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.展开更多
基金supported by a grant from theNational Natural Science Foundation of China(No.30572114).
文摘OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory effect of As2O3 on HepG2 cells at various As2O3 concentrations. The expression of p-JNK, caspase-3 and PARP was detected by Western blots. RESULTS As2O3 markedly inhibited the growth of the HepG2 cells and induced apoptosis. The results of Western blot analysis showed that the As2O3-induced apoptosis was accompanied by caspase-3 and PARP activation. p-JNK was detected at 10 min following As2O3 treatment, and preceded to peak at 20 min, and decreased by 30 min. The total protein content did not obviously change. The activation of JNK occurred prior to cell apoptosis. SP600125, a JNK inhibitor, suppressed the As2O3-induced activation of caspase-3 and PARP cleavage. CONCLUSION As2O3 inhibits the proliferation of human HepG2 hepatocellular carcinoma cells by inducing apoptosis in vitro. As2O3-induced apoptosis is accessed through the caspase-3 pathway. The JNK signal-transduction pathway and caspase-3 are involved upstream in the As2O3 induced HepG2 apoptotic response.
基金Project(2009CK2001) supported by the Science & Technology Development Key Program of Hunan Province STA of ChinaProject supported by the Young Teachers Program of Hunan University,China
文摘Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.