The Permian Lucaogou Formation is an important hydrocarbon source rock in the Junggar, Turpan, and Santanghu basins in Xinjiang, NW China. For the first time, dolostones associated with mantle-originated exhalative hy...The Permian Lucaogou Formation is an important hydrocarbon source rock in the Junggar, Turpan, and Santanghu basins in Xinjiang, NW China. For the first time, dolostones associated with mantle-originated exhalative hydrothermal fluid flows are discovered in Yuejingou section in the Santanghu Basin area. They include dolomicrite, doloarenite, and a small amount of dolorudite, and are finely (0.05-0.15 cm thick) interlaminated with lime micrite and dolomicritic analcime laminites. Alkali feldspar and analcime grains are common in doloarenite and are interpreted as having been derived from analcime phonolites and peralkaline magmatic rocks. These magmatic fragments were brought up from subsurface by hydrothermal fluid flow and had experienced exhalative brecciation, transport, and deposition on the lake floor. The matrix consists dominantly of dolomite and ankerite smaller than 0.01 mm. The dolostones can be subdivided into four types on the basis of mineral composition and content. The detrital analcime and alkaline feldspar grains and tuff lithics are interpreted as intraclasts, which were deposited in an under-filled starved lake basin. The δ18OPDB values of dolostones are -5‰ to -21.1‰, and -11.9‰ on average; the 87Sr/86Sr ratios of dolostones are 0.70457 to 0.706194, and 0.705005 on average. These values, in combination with evidence of multi-episodes of peralkaline extrusion, suggest a mantle origin of the hydrothermal fluids, which may have promoted primary dolomite formation. The fluid from the upper mantle caused serpentinization of ultramafic rocks that intruded into the lower crust to obtain Mg2+ and Fe2+, and injected the ions into the lake water as the Mg and Fe sources for dolomite and ankerite. Hydro- thermal fluids associated with peralkaline magmatic rocks also provided Ca2+, Mg2+, Fe2+, and CO32-. Explosive breccias formed and dolostones were convoluted near the vent of hydrothermal fluid exhalation, whereas laminated dolostones formed farther away from the vent. The dolostones are primary dolomite deposition in an intracontinental rift basin and associated with mantle-originated hydrothermal fluids. They provide an insight into the origin of dolomite formation in the geologic history and clues to understand the sedimentary environments and tectonic conditions in northern Xinjiang during the late Paleozoic.展开更多
The Santanghu area is located on the northeastern margin of the Junggar Basin,northern Xinjiang,Northwest China.The Carboniferous volcanic rocks in this area are widely distributed in Kaokesaiergaishan,Santanghu,Dahei...The Santanghu area is located on the northeastern margin of the Junggar Basin,northern Xinjiang,Northwest China.The Carboniferous volcanic rocks in this area are widely distributed in Kaokesaiergaishan,Santanghu,Daheishan and Naomaohu districts,which are located to the north of the Kalameili Fault.These rocks,sourced from a cognate magma,consist of basic,intermediate,and acidic lavas,and pyroclastic rock.The basic volcanic rocks are enriched with large-ion lithophile elements(LILE),but are relatively depleted in high field strength elements(HFSE),and have an obvious negative Nb-Ta-Ti anomaly.They were most probably derived from a depleted mantle source,and during their ascent,these magmas were not contaminated by the crustal material as they underwent magma crystallization differentiation.Based on the Carboniferous volcanic assemblage and geochemical data,it is apparent that the early Carboniferous volcanism occurred in a subduction-related tectonic setting.New LA-ICP-MS zircon U-Pb analyses constrain the age of the andesite within the volcanic rocks as the early Carboniferous(328.9-331.3 Ma).Combined with the regional geological record,comprehensive analysis of the isotope geochronological data indicates that the subduction of the Junggar Ocean predates the early Carboniferous,and that the Santanghu island arc magmatism was induced by the subduction of the Junggar Ocean in the Carboniferous.展开更多
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu ...Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.展开更多
Tectonic evolution of the Tethys and the boundary between the Gondwanaland and the Eurasia during the Carboniferous and Permian remain hotly debated. Qiangtang region in the Qinghai-Tibet Plateau may be a key place to...Tectonic evolution of the Tethys and the boundary between the Gondwanaland and the Eurasia during the Carboniferous and Permian remain hotly debated. Qiangtang region in the Qinghai-Tibet Plateau may be a key place to study these problems. A paleomagnetic study was conducted on the Late Paleozoic rocks in the northern Qiangtang region (33.7°N, 86.7°W), Tibet. Two sites (21 samples) in the Upper Carboniferous, eleven sites (101 samples) in the Permian, and two sites (16 samples) in the Lower Triassic were investigated. The rock magnetic data revealed hematite and magnetite as the main magnetic carders. In stepwise thermal demagnetization and/or combined alternating field (AC) demagnetization, two characteristic components in the majority of the samples were identified as (1) the Low-temperature Component (LTC), characterized by northerly decli- nation and moderate to steep inclination, corresponding to a pole position overlay with the present North Pole. A minority of the samples present single component, and their directions are the same as (2) the High-temperature Component (HTC) of double components. The combined single-component and HTC data of the Permian can pass the R-test at 95% level and the F-test at 99% level, as well as the BC-test. The pole position from the Late Carboniferous is at 31.8°S, 45.7°E with dp=2.1, dm=3.9, that from the Early and Middle (Late) Permian is at 31.7°S, 46.8°E with @=9.2, dm=16.9 (34.4°N, 54.1°E with dp=6.9, dm=1 2.5) respectively, and that from the Early Triassic is at 16.9°S, 22.5°E with dp=4.9, dm=9.2. These pole positions are different from the other poles for the Qiangtang Block, which suggests the single-component and HTC directions are probably a primary magnetization and the northern Qiangtang Block was paleogeographically situated at low latitudes in the Northern Hemisphere in the Late Paleozoic.展开更多
基金supported by National Natural Science Fundation of China (Grant No. 40802024)Sinopec Project "Study and Map Compilation for Structure, Lithofacies, and Paleogeography in Northwestern China (Grant No. YPH08103)"State Key Laboratory of Continental Dynamics (Grant No. BJ091358)
文摘The Permian Lucaogou Formation is an important hydrocarbon source rock in the Junggar, Turpan, and Santanghu basins in Xinjiang, NW China. For the first time, dolostones associated with mantle-originated exhalative hydrothermal fluid flows are discovered in Yuejingou section in the Santanghu Basin area. They include dolomicrite, doloarenite, and a small amount of dolorudite, and are finely (0.05-0.15 cm thick) interlaminated with lime micrite and dolomicritic analcime laminites. Alkali feldspar and analcime grains are common in doloarenite and are interpreted as having been derived from analcime phonolites and peralkaline magmatic rocks. These magmatic fragments were brought up from subsurface by hydrothermal fluid flow and had experienced exhalative brecciation, transport, and deposition on the lake floor. The matrix consists dominantly of dolomite and ankerite smaller than 0.01 mm. The dolostones can be subdivided into four types on the basis of mineral composition and content. The detrital analcime and alkaline feldspar grains and tuff lithics are interpreted as intraclasts, which were deposited in an under-filled starved lake basin. The δ18OPDB values of dolostones are -5‰ to -21.1‰, and -11.9‰ on average; the 87Sr/86Sr ratios of dolostones are 0.70457 to 0.706194, and 0.705005 on average. These values, in combination with evidence of multi-episodes of peralkaline extrusion, suggest a mantle origin of the hydrothermal fluids, which may have promoted primary dolomite formation. The fluid from the upper mantle caused serpentinization of ultramafic rocks that intruded into the lower crust to obtain Mg2+ and Fe2+, and injected the ions into the lake water as the Mg and Fe sources for dolomite and ankerite. Hydro- thermal fluids associated with peralkaline magmatic rocks also provided Ca2+, Mg2+, Fe2+, and CO32-. Explosive breccias formed and dolostones were convoluted near the vent of hydrothermal fluid exhalation, whereas laminated dolostones formed farther away from the vent. The dolostones are primary dolomite deposition in an intracontinental rift basin and associated with mantle-originated hydrothermal fluids. They provide an insight into the origin of dolomite formation in the geologic history and clues to understand the sedimentary environments and tectonic conditions in northern Xinjiang during the late Paleozoic.
基金supported by Land and Resources Survey Project of China(Grant No. 1212011085009)the Sinopec Project "Study and Map Compilation for Structure,Lithofacies,and Paleogeography in Northwestern China" (Grant No. YPH08103)National Natural Science Foundation of China (Grant No. 40802051)
文摘The Santanghu area is located on the northeastern margin of the Junggar Basin,northern Xinjiang,Northwest China.The Carboniferous volcanic rocks in this area are widely distributed in Kaokesaiergaishan,Santanghu,Daheishan and Naomaohu districts,which are located to the north of the Kalameili Fault.These rocks,sourced from a cognate magma,consist of basic,intermediate,and acidic lavas,and pyroclastic rock.The basic volcanic rocks are enriched with large-ion lithophile elements(LILE),but are relatively depleted in high field strength elements(HFSE),and have an obvious negative Nb-Ta-Ti anomaly.They were most probably derived from a depleted mantle source,and during their ascent,these magmas were not contaminated by the crustal material as they underwent magma crystallization differentiation.Based on the Carboniferous volcanic assemblage and geochemical data,it is apparent that the early Carboniferous volcanism occurred in a subduction-related tectonic setting.New LA-ICP-MS zircon U-Pb analyses constrain the age of the andesite within the volcanic rocks as the early Carboniferous(328.9-331.3 Ma).Combined with the regional geological record,comprehensive analysis of the isotope geochronological data indicates that the subduction of the Junggar Ocean predates the early Carboniferous,and that the Santanghu island arc magmatism was induced by the subduction of the Junggar Ocean in the Carboniferous.
基金supported by the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20126101110020)the National Natural Science Foundation of China(Grant No.41272116)
文摘Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.
基金supported by the China Geology Survey Bureau Program (Grant No. 1212010610102)the National Natural Science Foundation of China (Grant No. 41074045)the Special Key Subject Funds of Colleges and Universities in Shaanxi Province (Grant No. 081802)
文摘Tectonic evolution of the Tethys and the boundary between the Gondwanaland and the Eurasia during the Carboniferous and Permian remain hotly debated. Qiangtang region in the Qinghai-Tibet Plateau may be a key place to study these problems. A paleomagnetic study was conducted on the Late Paleozoic rocks in the northern Qiangtang region (33.7°N, 86.7°W), Tibet. Two sites (21 samples) in the Upper Carboniferous, eleven sites (101 samples) in the Permian, and two sites (16 samples) in the Lower Triassic were investigated. The rock magnetic data revealed hematite and magnetite as the main magnetic carders. In stepwise thermal demagnetization and/or combined alternating field (AC) demagnetization, two characteristic components in the majority of the samples were identified as (1) the Low-temperature Component (LTC), characterized by northerly decli- nation and moderate to steep inclination, corresponding to a pole position overlay with the present North Pole. A minority of the samples present single component, and their directions are the same as (2) the High-temperature Component (HTC) of double components. The combined single-component and HTC data of the Permian can pass the R-test at 95% level and the F-test at 99% level, as well as the BC-test. The pole position from the Late Carboniferous is at 31.8°S, 45.7°E with dp=2.1, dm=3.9, that from the Early and Middle (Late) Permian is at 31.7°S, 46.8°E with @=9.2, dm=16.9 (34.4°N, 54.1°E with dp=6.9, dm=1 2.5) respectively, and that from the Early Triassic is at 16.9°S, 22.5°E with dp=4.9, dm=9.2. These pole positions are different from the other poles for the Qiangtang Block, which suggests the single-component and HTC directions are probably a primary magnetization and the northern Qiangtang Block was paleogeographically situated at low latitudes in the Northern Hemisphere in the Late Paleozoic.