A three mass model of vocal cords as well as mathematical expression of the model are discussed. Different kinds of typical hoarse speech due to laryngeal diseases are simulated on microcomputer and the effects of di...A three mass model of vocal cords as well as mathematical expression of the model are discussed. Different kinds of typical hoarse speech due to laryngeal diseases are simulated on microcomputer and the effects of different pathological factors of vocal cords on model parameters are studied. Some typical spectrum distribution of the simulated speech signals are given. Moreover, hoarse speech signals of some typical cases are analyzed by the methods of digital signal processing, including FFT, LPC, Cepstrum technique, Pseudocolor encoding, etc. The experiment results show that the three mass model analysis of vocal cords is an efficient method for analysis of hoarse speech signals.展开更多
The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the s...The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.展开更多
Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. Th...Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. The derived equation is used to fit the experimental band gap energy of InxAl1-xN, InxGa1-xN and A1xGal xN with x from 0 to 1. It is found that the fitting results are better than those done by using SCPA. The fitting results are also better than those obtained by using the formula with a small bowing coefficient, especially for InxAl1-xN. In addition, our model can also be used to describe the composition de- pendence of band gap energy of other Ⅲ-V ternary alloys.展开更多
Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion condi...Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to ante- rior-posterior tibial translation or internal-external rotation at early 30° of knee flexions.展开更多
文摘A three mass model of vocal cords as well as mathematical expression of the model are discussed. Different kinds of typical hoarse speech due to laryngeal diseases are simulated on microcomputer and the effects of different pathological factors of vocal cords on model parameters are studied. Some typical spectrum distribution of the simulated speech signals are given. Moreover, hoarse speech signals of some typical cases are analyzed by the methods of digital signal processing, including FFT, LPC, Cepstrum technique, Pseudocolor encoding, etc. The experiment results show that the three mass model analysis of vocal cords is an efficient method for analysis of hoarse speech signals.
基金supported by the National Natural Science Foundation of China(Grant No. 30801163)
文摘The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.
基金supported by the Special Funds for Major State Basic Research Project (Grant No. 2011CB301900)the National Natural Science Foundation of China (Grant No. 60990311)
文摘Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. The derived equation is used to fit the experimental band gap energy of InxAl1-xN, InxGa1-xN and A1xGal xN with x from 0 to 1. It is found that the fitting results are better than those done by using SCPA. The fitting results are also better than those obtained by using the formula with a small bowing coefficient, especially for InxAl1-xN. In addition, our model can also be used to describe the composition de- pendence of band gap energy of other Ⅲ-V ternary alloys.
文摘Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to ante- rior-posterior tibial translation or internal-external rotation at early 30° of knee flexions.