期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
ZnO/PbS量子点异质结太阳能电池结构调控研究 被引量:1
1
作者 解镕玮 翟光美 +3 位作者 王恒 张继涛 张华 许并社 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第6期1509-1515,共7页
利用氧化锌溶胶-凝胶(Sol-Gel)、锌盐乙醇溶液(ES)和氧化锌纳米粒子溶液(NP)三种不同的籽晶层前驱液,在ITO衬底上通过化学浴沉积方法(CBD)制备出了一维氧化锌纳米棒阵列薄膜,并在所制备的氧化锌纳米棒阵列薄膜上构筑了具有"三维&qu... 利用氧化锌溶胶-凝胶(Sol-Gel)、锌盐乙醇溶液(ES)和氧化锌纳米粒子溶液(NP)三种不同的籽晶层前驱液,在ITO衬底上通过化学浴沉积方法(CBD)制备出了一维氧化锌纳米棒阵列薄膜,并在所制备的氧化锌纳米棒阵列薄膜上构筑了具有"三维"异质结结构的PbS量子点太阳能电池。通过扫描电镜(SEM)、X射线衍射(XRD)和透射光谱分析等研究了籽晶层对氧化锌纳米棒阵列薄膜形貌、结构和光学性质的影响;结合电池性能测试结果,比较分析了"三维"异质结结构和"平面"异质结结构对电池性能的影响。结果表明:在ES籽晶层上生长的氧化锌纳米棒阵列薄膜的取向性最好,Sol-Gel次之,NP最差;在ES和Sol-Gel籽晶层上生长2 h的样品透射率在80%左右;与"平面"异质结结构PbS量子点电池相比,基于氧化锌纳米棒阵列薄膜制备的"三维"异质结结构电池的短路电流可提高40%,表明"三维"异质结结构有利于载流子的分离和输运。 展开更多
关键词 ZNO薄膜 纳米棒阵列 PbS量子点 “三维”异质结 太阳能电池
下载PDF
Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr(Ⅵ) 被引量:4
2
作者 Jingwen Pan Zhongjie Guan +1 位作者 Jianjun Yang Qiuye Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期200-208,共9页
Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst... Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability. 展开更多
关键词 ZnIn2S4/SnS2 3D heterostructure Photocatalytic Cr(VI)reduction Visible-light response Charge separation Photocatalytic stability
下载PDF
Microfluidic generation of Buddha beads-like microcarriers for cell culture 被引量:4
3
作者 王洁 邹旻含 +4 位作者 孙灵钰 程瑶 商珞然 付繁繁 赵远锦 《Science China Materials》 SCIE EI CSCD 2017年第9期857-865,共9页
The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here,inspired by the structure of Buddha beads, which... The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here,inspired by the structure of Buddha beads, which are generally composed of moveable beads strung on a rope, we present novel cell microcarriers with controllable macropores and heterogeneous microstructures by using a capillary array microfluidic technology. Microfibers with a string of moveable and releasable microcarriers could be achieved by an immediate gelation reaction of sodium alginate spinning and subsequent polymerization of cell-dispersed gelatin methacrylate emulsification. The sizes of the microcarriers and their inner macropores could be well tailored by adjusting the flow rates of the microfluidic phases; this was of great importance in guaranteeing a sufficient supply of nutrients during cell culture. In addition, by infusing multiple cell-dispersed pregel solutions into the capillaries, the microcarriers with spatially heterogeneous cell encapsulations for mimicking physiological structures and functions could also be achieved. 展开更多
关键词 microfluidics MICROCARRIER cell culture MICROFIBER EMULSION
原文传递
Molecular cocrystal odyssey to unconventional electronics and photonics 被引量:1
4
作者 Weigang Zhu Xiaotao Zhang Wenping Hu 《Science Bulletin》 SCIE EI CSCD 2021年第5期512-520,M0004,共10页
Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists c... Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists currently seek to answer are: can we design and control the molecular self-assembly and cocrystal growth, what’s the packing-property correlations, as well as how can we improve device parameters for real applications in industry. In this contribution, we review our and other groups’ recent advances in the cocrystal research field sequentially including:(1) nucleation and growth mechanisms for selective preparation of cocrystals with different donor/acceptor ratio and morphology;(2) charge transport and electronic devices, particularly field-effect transistor(FET) and photo-response device. We discuss the in-situ single crystal device fabrication method, ambipolar charge transport, and molecular packingcharge separation correlation;(3) photonic and optical property, focusing on optical waveguide, photonic logic computation, and nonlinear optics(NLO). We present unusual optical properties revealed by advanced instruments and general structure-function relations for future study. Importantly, the extensive investigations described herein yield in-depth and detailed understandings of molecular cocrystals,and show that such bi-component material systems together with the developed instrument measurement methodologies have the potential to initiate unconventional electronic and photonic science and technology. 展开更多
关键词 SELF-ASSEMBLY COCRYSTAL ELECTRONICS PHOTONICS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部