Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteris...Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.展开更多
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The fa...The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.展开更多
his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/c...his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.展开更多
Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) ...Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.展开更多
Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The corr...Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.展开更多
In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
To investigate the acoustic emission(AE)precursors of coarse-grained hard rock instability,an experimental study on the rockburst and slabbing process of granite was carried out using a true triaxial test system.The e...To investigate the acoustic emission(AE)precursors of coarse-grained hard rock instability,an experimental study on the rockburst and slabbing process of granite was carried out using a true triaxial test system.The evolution of the AE signals was monitored and analyzed in terms of the AE hit rate,fractal dimension of the AE hit number,AE count rate,b-value,dominant frequency and microcrack type.The test results show that after rock slabbing occurs,the AE precursors that can be used to predict the final dynamic instability(rockburst)are as follows:indicators such as the AE hit rate and AE count rate suddenly increase and then suddenly decrease;the AE hit rate exhibits a“quiet period”;during the“quiet period”,a small number of high-amplitude and low-frequency hits occur,and the signals corresponding to shear fracture continue to increase.The AE precursors for the final static instability(spalling)are as follows:both the AE hit rate and the b-value continuously decrease,and intermittent sudden increases appear in the high-frequency hits or the AE count rate.展开更多
Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress p...Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress paths were designed,a commonly used stress path in true triaxial unloading rockburst tests and a new test path in which the intermediate principal stress was varied.During the tests,a high-speed camera was used to record the strainburst process,and an acoustic emission(AE)monitoring system was used to monitor the AE characteristics of failure.In these two stress paths,all the marble specimens exhibited strainbursts;however,when the intermediate principal stress was varied,the rockburst became more violent.The obtained results indicate that the intermediate principal stress has a significant effect on rockburst behavior of marble.Under a higher intermediate principal stress before the unloading,more elastic strain energy was accumulated in the specimen,and the cumulative AE energy was higher in the rockburst-induced failure,i.e.,more elastic strain energy was released during the failure.Therefore,more violent failure was observed:more rock fragments with a higher mass and larger size were ejected outward.展开更多
A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sid...A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.展开更多
As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the ...As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly.展开更多
基金Project(52074294)supported by the National Natural Science Foundation of ChinaProject(2022YJSNY16)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金Project(52174098)supported by the National Natural Science Foundation of ChinaProject(2022JJ20063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023CXQD011)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.
基金Project(42202318)supported by the National Natural Science Foundation of China。
文摘his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,11102239)supported by the National Natural Science Foundation of China
文摘Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (No.6821001005)
文摘Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金Project(51869003)supported by the National Natural Science Foundation of ChinaProject(T3030097958)supported by the High Level Innovation Team and Outstanding Scholar Program of Universities in Guagnxi Province,China。
文摘To investigate the acoustic emission(AE)precursors of coarse-grained hard rock instability,an experimental study on the rockburst and slabbing process of granite was carried out using a true triaxial test system.The evolution of the AE signals was monitored and analyzed in terms of the AE hit rate,fractal dimension of the AE hit number,AE count rate,b-value,dominant frequency and microcrack type.The test results show that after rock slabbing occurs,the AE precursors that can be used to predict the final dynamic instability(rockburst)are as follows:indicators such as the AE hit rate and AE count rate suddenly increase and then suddenly decrease;the AE hit rate exhibits a“quiet period”;during the“quiet period”,a small number of high-amplitude and low-frequency hits occur,and the signals corresponding to shear fracture continue to increase.The AE precursors for the final static instability(spalling)are as follows:both the AE hit rate and the b-value continuously decrease,and intermittent sudden increases appear in the high-frequency hits or the AE count rate.
基金Project(2016YFC0801403) supported by the National Key Research and Development Program of ChinaProject(2017RCJJ012) supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China+1 种基金Project(ZR2018MEE009) supported by the Shandong Provincial Natural Science Foundation,ChinaProject(MDPC2017ZR04) supported by the Open Project Fund for State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology of China
文摘Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress paths were designed,a commonly used stress path in true triaxial unloading rockburst tests and a new test path in which the intermediate principal stress was varied.During the tests,a high-speed camera was used to record the strainburst process,and an acoustic emission(AE)monitoring system was used to monitor the AE characteristics of failure.In these two stress paths,all the marble specimens exhibited strainbursts;however,when the intermediate principal stress was varied,the rockburst became more violent.The obtained results indicate that the intermediate principal stress has a significant effect on rockburst behavior of marble.Under a higher intermediate principal stress before the unloading,more elastic strain energy was accumulated in the specimen,and the cumulative AE energy was higher in the rockburst-induced failure,i.e.,more elastic strain energy was released during the failure.Therefore,more violent failure was observed:more rock fragments with a higher mass and larger size were ejected outward.
基金Projects(41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2017zzts167)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.
基金Project(50908234)supported by the National Natural Science Foundation of ChinaProject(2017G002-K)supported by the Key Subject of Science and Technology Research and Development Plan of China Railway General Corporation
文摘As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly.