A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeab...A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.展开更多
Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of th...Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of the cyclone and the rela- tive formulas obtained from scientific experimentation and practice, the structure parameter was determined by calculation. This provides a more scientific reasonable method for determining the structure parameter of the unpressurized feeding three-product heavy-medium cyclone.展开更多
基金supported by Chinese Ministry of Education (No.213022A)the National Natural Science Foundation of China (No.51574112)+4 种基金Henan Key Laboratory of Biogenic Traces and Sedimentary Minerals (No.OTMP1410)the Key Research Project of Higher Education Institution of Henan Province in 2015 (No.15A440001)the Doctor Funds of Henan Polytechnic University (No.B2015-05)the Basic and Advanced Technology Research Projects of Henan Province (No.162300410031)the Science and Technology Innovation Funds for Distinguished Young Scholar in Henan Province (No.164100510013)
文摘A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.
文摘Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of the cyclone and the rela- tive formulas obtained from scientific experimentation and practice, the structure parameter was determined by calculation. This provides a more scientific reasonable method for determining the structure parameter of the unpressurized feeding three-product heavy-medium cyclone.