In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop...Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop novel and efficient catalysts to accelerate water splitting reaction. Recently, newly emerging self-supported materials, especially three dimensional(3D) carbon substrate electrochemical catalysts, have attracted great attention benefiting from their fantastic catalytic performances, such as large surface area,enhanced conductivity, tunable porosity, and so on. This review summarizes the outstanding materials used for hydrogen evolution reaction and oxygen evolution reaction. And catalysts that acted as both anode and cathode in two-electrode systems for overall water splitting are introduced systematically. The opportunities and challenges of 3D carbon substrate materials for electrochemical water splitting are proposed.展开更多
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
基金supported by the National Natural Science Foundation of China (61525402, 61775095 and 5161101159)Jiangsu Provincial Key Research and Development Plan (BE2017741)
文摘Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop novel and efficient catalysts to accelerate water splitting reaction. Recently, newly emerging self-supported materials, especially three dimensional(3D) carbon substrate electrochemical catalysts, have attracted great attention benefiting from their fantastic catalytic performances, such as large surface area,enhanced conductivity, tunable porosity, and so on. This review summarizes the outstanding materials used for hydrogen evolution reaction and oxygen evolution reaction. And catalysts that acted as both anode and cathode in two-electrode systems for overall water splitting are introduced systematically. The opportunities and challenges of 3D carbon substrate materials for electrochemical water splitting are proposed.