期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“不可理喻”不是“不可理解”
1
作者 赵丕杰 《新闻与写作》 北大核心 2009年第6期59-59,共1页
“不可理喻”的意思是不能用道理使之明白,形容人愚昧、固执或蛮不讲理。清·俞樾《右台仙馆笔记》:“有某甲与之(指阿庆)忤,庆纠其党,欲殴之。甲惧。奔告于庆妻之父。其妻父曰:‘是不可理喻,汝谨避之而已。”巴金《家》八... “不可理喻”的意思是不能用道理使之明白,形容人愚昧、固执或蛮不讲理。清·俞樾《右台仙馆笔记》:“有某甲与之(指阿庆)忤,庆纠其党,欲殴之。甲惧。奔告于庆妻之父。其妻父曰:‘是不可理喻,汝谨避之而已。”巴金《家》八:“卖票的人告诉他们,这和普通戏院不同,不买票就不能看戏。他们简直不可理喻,一定要进去,结果被我们的人赶出来了。” 展开更多
关键词 成语 词义 “不可理喻” “不可理解”
原文传递
Rationality of quotients by linear actions of affine groups
2
作者 BOGOMOLOV Fedor BHNING Christian GRAF VON BOTHMER Hans-Christian 《Science China Mathematics》 SCIE 2011年第8期1521-1532,共12页
LetG = SLn(C)Cn be the (special) affine group. In this paper we study the representation theory of G and in particular the question of rationality for V/G, where V is a generically free G-representation. We show that ... LetG = SLn(C)Cn be the (special) affine group. In this paper we study the representation theory of G and in particular the question of rationality for V/G, where V is a generically free G-representation. We show that the answer to this question is positive (Theorem 6.1) if the dimension of V is sufficiently large and V is indecomposable. We explicitly characterize two-step extensions 0 → S → V → Q → 0, with completely reducible S and Q, whose rationality cannot be obtained by the methods presented here (Theorem 5.3). 展开更多
关键词 RATIONALITY linear group quotients affine groups
原文传递
Controllability of Non-densely Defined Neutral Functional Differential Systems in Abstract Space
3
作者 Xianlong FU Xingbo LIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第2期243-252,共10页
In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-dens... In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-densely defined and satisfies the Hille-Yosida condition. As an application, an example is provided to illustrate the obtained result. 展开更多
关键词 CONTROLLABILITY Non-densely defined Integral solution Sadovskii fixed point theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部