Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and ...Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings a...In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.展开更多
Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as ap...Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as applications of above results.展开更多
In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem ar...In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.展开更多
Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the...Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the system.展开更多
Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the firs...Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.展开更多
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f...By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.展开更多
The coceptions of two element α-concave convex and mixed α-concave convex operators are introduced. The fixed point theorems of the two type operators are obtained. By these theorems,the existence and uniquence of s...The coceptions of two element α-concave convex and mixed α-concave convex operators are introduced. The fixed point theorems of the two type operators are obtained. By these theorems,the existence and uniquence of solution of three type nonlinear integral equations is studied.展开更多
Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acu...Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acute presentations,some of whom may have liver failure.There are very limited published data on patients with AIH with liver failure at initial diagnosis,which consist mostly of small retrospective studies.As a consequence,the clinical features and optimal management of this cohort remain poorly defined.A subset of patients with AIH who present with liver failure do respond to corticosteroids,but for the vast majority,an urgent liver transplantation may offer the only hope of long-term survival.At present,there is uncertainty on how best to stratify such a cohort into responders and non-responders to corticosteroids as soon as possible after hospitalization,thus optimizing their management.This editorial attempts to answer some of the unresolved issues relating to management of patients with AIH with liver failure at initial presentation.However,it must be emphasized that,at present,this editorial is based mostly on small retrospective studies,and it is an understatement that multicenter prospective studies are urgently needed to address this important clinical issue.展开更多
We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed ...We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.展开更多
In this paper,we give a fixed point theorem for multi-valued composite increasing operators, which generalizes the theorem of the paper [1] under not only multi-valued mappings but also single-valued mappings. And we...In this paper,we give a fixed point theorem for multi-valued composite increasing operators, which generalizes the theorem of the paper [1] under not only multi-valued mappings but also single-valued mappings. And we generalizes the corresponding results of [2]-[5].展开更多
In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a cla...In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.展开更多
文摘Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
文摘We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
文摘Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
基金Foundation item: Supported by the Science Foundation from the Ministry of Education of Jiangsu Province(04KJD110168, 06KJBll0107)
文摘In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.
基金Supported by the National Natural Science Foundation of China(10361005)
文摘Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as applications of above results.
基金Supported by the Scientific Research Foundation of Bijie University(20072001)
文摘In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.
文摘Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the system.
文摘Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.
基金Supported by the National Natural Sciences Foundation of China(10361006)Supported by the Natural Sciences Foundation of Yunnan Province(2003A0001M)Supported by the Jiangsu "Qing-lanProject" for Excellent Young Teachers in University(2006)
文摘By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.
文摘The coceptions of two element α-concave convex and mixed α-concave convex operators are introduced. The fixed point theorems of the two type operators are obtained. By these theorems,the existence and uniquence of solution of three type nonlinear integral equations is studied.
文摘Autoimmune hepatitis (AIH) is a disease of unknown etiology,its hallmark being ongoing hepatic inflammation.By its very nature,it is a chronic condition,although increasingly,we are becoming aware of patients with acute presentations,some of whom may have liver failure.There are very limited published data on patients with AIH with liver failure at initial diagnosis,which consist mostly of small retrospective studies.As a consequence,the clinical features and optimal management of this cohort remain poorly defined.A subset of patients with AIH who present with liver failure do respond to corticosteroids,but for the vast majority,an urgent liver transplantation may offer the only hope of long-term survival.At present,there is uncertainty on how best to stratify such a cohort into responders and non-responders to corticosteroids as soon as possible after hospitalization,thus optimizing their management.This editorial attempts to answer some of the unresolved issues relating to management of patients with AIH with liver failure at initial presentation.However,it must be emphasized that,at present,this editorial is based mostly on small retrospective studies,and it is an understatement that multicenter prospective studies are urgently needed to address this important clinical issue.
文摘We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.
文摘In this paper,we give a fixed point theorem for multi-valued composite increasing operators, which generalizes the theorem of the paper [1] under not only multi-valued mappings but also single-valued mappings. And we generalizes the corresponding results of [2]-[5].
文摘In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.