In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by...In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.展开更多
Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the gre...Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the great importance of the final step to gear forming and its complication with interactive factors, this work aims at examining the influence of key factors on the final step in cold orbital forging of a spur bevel gear. Using the finite element(FE) method and control variate method, the influence rules of four key factors, rotation velocity of the upper tool, n, feeding velocity of the lower tool, v, tilted angle of the upper tool, γ, friction factor between the tools and the billet, m, on the geometry and the deformation inhomogeneity of the cold orbital forged gear are thoroughly clarified. The research results show that the flash becomes more homogeneous with increasing v, increasing m, decreasing n or decreasing γ. And the deformation of the gear becomes more homogeneous with increasing v, decreasing n or decreasing γ. Finally, a corresponding experiment is conducted, which verifies the accuracy of FE simulation conclusions.展开更多
To evaluate measurement uncertainty for small sample size and measurement data from an unknown distribution, we propose a grey evaluation method of measurement uncertainty based on the grey relation coefficient. The u...To evaluate measurement uncertainty for small sample size and measurement data from an unknown distribution, we propose a grey evaluation method of measurement uncertainty based on the grey relation coefficient. The uncertainty of measurement is analyzed using grey system theory, and the defects of the grey evaluation model of measurement uncertainty (GEMU) are studied. We then establish an improved grey evaluation model of measurement uncertainty (IGEMU). Simulations show that the precision of IGEMU is greater than that of GEMU, and that sample size has only a small effect on the precision of IGEVU. In particular, IGEMU is applied to evaluating measurement uncertainty for small sample size and measurement data from an unknown distribution. The measurement uncertainty of total profile deviation, which is measured by the CNC gear measuring center, can be evaluated by a combination of IGEMU and the Monte Carlo method.展开更多
基金Project(2008AA11A116)supported by the National High Technology Research and Development Program of ChinaProject(9140A2011QT4801)supported by advanced research of the Weapon Equipment Key Fund Program,ChinaProject(61075002)supported by the Independent Subject of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of Hunan University,China
文摘In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(IRT13087)supported by Innovative Research Team Development Program of Ministry of Education of China+2 种基金Project(2012-86)supported by High-End Talent Leading Program of Hubei Province,ChinaProject(2014CFB876)supported by Natural Science Foundation of Hubei ProvinceChina
文摘Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the great importance of the final step to gear forming and its complication with interactive factors, this work aims at examining the influence of key factors on the final step in cold orbital forging of a spur bevel gear. Using the finite element(FE) method and control variate method, the influence rules of four key factors, rotation velocity of the upper tool, n, feeding velocity of the lower tool, v, tilted angle of the upper tool, γ, friction factor between the tools and the billet, m, on the geometry and the deformation inhomogeneity of the cold orbital forged gear are thoroughly clarified. The research results show that the flash becomes more homogeneous with increasing v, increasing m, decreasing n or decreasing γ. And the deformation of the gear becomes more homogeneous with increasing v, decreasing n or decreasing γ. Finally, a corresponding experiment is conducted, which verifies the accuracy of FE simulation conclusions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61108052 and 61108073)the Technology Program of the Educational Office of Hei Longjiang Province in China (Grant No.11553016)
文摘To evaluate measurement uncertainty for small sample size and measurement data from an unknown distribution, we propose a grey evaluation method of measurement uncertainty based on the grey relation coefficient. The uncertainty of measurement is analyzed using grey system theory, and the defects of the grey evaluation model of measurement uncertainty (GEMU) are studied. We then establish an improved grey evaluation model of measurement uncertainty (IGEMU). Simulations show that the precision of IGEMU is greater than that of GEMU, and that sample size has only a small effect on the precision of IGEVU. In particular, IGEMU is applied to evaluating measurement uncertainty for small sample size and measurement data from an unknown distribution. The measurement uncertainty of total profile deviation, which is measured by the CNC gear measuring center, can be evaluated by a combination of IGEMU and the Monte Carlo method.