In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In a...In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.展开更多
Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Compari...Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.展开更多
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els fai...The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.展开更多
In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within th...In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model.This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea.The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time.When this warm current encounters the North Shandong-South Yellow Sea coastal current,there is a strong reverse shear action between the two current systems,forming a reverse-S-shaped shear front that begins near 34?N in the south and extends to approximately 38?N,with an overall length of over 600 km.The main driving force for the formation of this shear front derives from the circulation system with the reverse flow.In the shear zone,temperature and salinity gradients increase,flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side.The vertical circulation structure is complicated,consisting of a series of meso-and small-scale anti-clockwise eddies.Particularly,this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents,resulting in fine sediments deposition due to the weak hydrodynamic regime.展开更多
This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the oper...This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the operational coastal ocean forecast system at Indian Na- tional Centre for Ocean Information Services (INCOIS). Evaluation is carried out based on comparisons of day-3 forecasts of surface wind with in situ and remote-sensing data. The results show that the model predicts the surface wind fields fairly accurately over the west coast of India, with high skill in predicting the surface wind during the pre-monsoon season. The model predicts the diurnal variability of the surface wind with reasonable accuracy. The model simulates the land-sea breeze cycle in the coastal region realistically, which is very clearly observed during the northeast monsoon and pre-monsoon season and is less prominent during the southwest monsoon season.展开更多
Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data, we analyzed the reversal process of the South China Sea (SCS) westem boundary current (SCS...Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data, we analyzed the reversal process of the South China Sea (SCS) westem boundary current (SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process. Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month. During the SCS monsoon reversal period, the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September. Subsequently, the southward Vietnam coastal boundary current strengthened. However, the northward Natuna Current maintained a summer state until mid-October. Thus, the balance between the southward and northward currents was lost when they met, their junction moved gradually southward. However, a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current (VOC) remained near its original latitude, Meanwhile, the VOC and associated dipole circulation system strengthened. After mid- October, the northward Natuna Current began to weaken, the loop current finally shed, becoming a cool ring. The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.展开更多
The spatial and temporal distribution patterns of the zooplankton of Chabahar Bay, Gulf of Oman were investigated. Zooplankton sampling was collected twice a season at five stations in Chabahar Bay. Sampling was done ...The spatial and temporal distribution patterns of the zooplankton of Chabahar Bay, Gulf of Oman were investigated. Zooplankton sampling was collected twice a season at five stations in Chabahar Bay. Sampling was done during July-August 2007 (SW-monsoon), October-November 2007 (post-monsoon), January-February 2008 (NE-monsoon), and March-May 2008 (pre-monsoon). Five stations were investigated throughout Chabahar Bay. Four species of Oncaeidae (Oncaea media, Oncaea minuta, Oncaea venusta and Oncaea clevei) were identified. The abundance of Oncaea media was maximum in the post-monsoon (〉 700 ind..m3) and disappeared in pre-monsoon while Oncaea minuta was maximum in post-monsoon (〉 130 ind..m3) and disappeared in NE-monsoon and pre-monsoon. Oncaea venusta showed the highest abundance in post-monsoon (〉 370 ind..m3) and the lowest in pre-monsoon (〈 55 ind..m-3). The highest abundance of Oncaea clevei was in post-monsoon (〈 240 ind..m-3) and lowest in NE-monsoon. Overall, the highest abundance of Oncaeidae was observed in post-monsoon. The results showed that depth was the most important factor controlling abundance of the Oncaeidae. Spatially, the highest abundance of Oncaeidae species was found in off shore stations. Four species of this family showed positive correlation with depth. Also, O. venusta showed negative correlation with salinity that showed this species prefers low saline water.展开更多
The East Asian summer climate is modulated by a low-pressure system over northern East Asia(NEAL) and a subtropical high over the western North Pacific. Many studies have focused on the subtropical high, but little ...The East Asian summer climate is modulated by a low-pressure system over northern East Asia(NEAL) and a subtropical high over the western North Pacific. Many studies have focused on the subtropical high, but little is known about NEAL, especially its change in the future under global warming scenarios. This study investigates the projected change in NEAL in the late twenty-first century, using the outputs of 20 models from Phase 5 of the Coupled Model Intercomparison Project — specifically, their historical climate simulations(HIST) and future climate projections under the Representative Concentration Pathway 4.5(RCP4.5) and 8.5(RCP8.5) scenarios. The results show that the models capture the NEAL well in HIST. The NEAL is weakened in the late twenty-first century under the two RCP scenarios, with a stronger weakening under RCP8.5 than under RCP4.5.The weakened NEAL increases the geopotential height zonal gradient in the west and causes a southerly anomaly, which may bring more moisture and rainfall to northern East Asia.展开更多
This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipit...This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipitation, wind speed, sunshine duration, and snow depth. Results show that annual mean temperature increased at a significant rate of 0.35℃ per decade, most notably in the Lesser Khingan Mountains and in winter. Annual rainfall had no obvious linear trend, while rainy days had a significant decreasing trend. So, the rain intensity increased. High-temperature days had a weak increasing trend, and low-temperature days and cold wave showed significant decreasing trends with rates of 3.9 d per decade and -0.64 times per decade, respectively. Frequency and spatial scope of low-temperature hazard reduced significantly. Warm days and warm nights significantly increased at 1.0 and 2.4 d per decade, while cold days and cold nights decreased significantly at -1.8 and -4.1 d per decade, respectively. The nighttime warming rate was much higher than that for daytime, indicating that nighttime warming had a greater contribution to the overall warming trend than daytime warming. The annual mean wind speed, gale days, and sunshine duration had significant decreasing trends at rates of-0.21 m s-1 per decade, -4.0 d per decade and -43.3 h per decade, respectively. The snow cover onset dates postponed at a rate of 1.2 d per decade, and the snow cover end date advanced at 1.5 d per decade, which leads to shorter snow cover duration by -2.7 d per decade. Meanwhile, the maximum snow depth decreased at -0.52 cm per decade. In addition, the snow cover duration shows a higher correlation with precipitation than with temperature, which suggests that precipitation plays a more important role in maintaining snow cover duration than temperature.展开更多
The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The r...The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.展开更多
On March 11, 2011, a simply unprecedented set of circumstances occurred in Northeast ]apan. Three disasters struck nearly simultaneously: a 9.0 earthquake, huge tsunami, and nuclear catastrophe. People and places wer...On March 11, 2011, a simply unprecedented set of circumstances occurred in Northeast ]apan. Three disasters struck nearly simultaneously: a 9.0 earthquake, huge tsunami, and nuclear catastrophe. People and places were forever changed. Using a series of vignettes, this paper personalized these numbers through a review of rebuilding efforts, voluntarism, consumer food impacts, and consumer behavior associated with the imperfect storm that destroyed more than 46,000 buildings, killed more than 12,000, and resulted in damages from the tsunami and earthquake alone of between 16 and 25 trillion yen. Possible implications of these results are advanced.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global t...The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.展开更多
A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for p...A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.展开更多
Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfa...Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfall over eastern China. Corresponding to a higher (lower) IEANI, the EASM at mid-latitudes is stronger (weaker), and there is more (less) rainfall in North China and less (more) rainfall near the Yangtze River valley. To investigate long-term variation in the EASM, we reconstructed the BC 665AD 1985 IEANI based on reconstructed temperatures in Beijing and Tasmania, Australia. Over the past 2000 years, the reconstructed/EANI generally represents centennial-scale variations in the EASM and rainfall over eastem China. The correlation pattern between the reconstructed IEANI and rainfall over eastern China is similar to modem observations, implying that the correlation feature at centennial scales also occurred over the past 2000 years. With respect to longer-scale (several hundreds to one thousand years) IEANI variations and their correlations with rainfall, further verifications should be performed using various paleoclimatic proxy data.展开更多
基金Supported by National Natural Science Foundation of China(40901136)~~
文摘In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.
基金Supported by the South China Sea Institute of Oceanology,Chinese Academy of Sciences
文摘Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.
基金supported by the National Basic Research Program of China 2009CB421401/2006CB400503the Chinese Meteorological Administration ProgramGYHY200706001
文摘The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.
基金supported by the National Natural Science Foundation of China (Nos.41030856,41406081,41476030)the Shandong Natural Science Fund (BS2012 HZ022)+1 种基金the Project of Taishan Scholarsthe Project of Ocean-Land interaction and coastal geological hazard (GZH201100203)
文摘In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model.This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea.The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time.When this warm current encounters the North Shandong-South Yellow Sea coastal current,there is a strong reverse shear action between the two current systems,forming a reverse-S-shaped shear front that begins near 34?N in the south and extends to approximately 38?N,with an overall length of over 600 km.The main driving force for the formation of this shear front derives from the circulation system with the reverse flow.In the shear zone,temperature and salinity gradients increase,flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side.The vertical circulation structure is complicated,consisting of a series of meso-and small-scale anti-clockwise eddies.Particularly,this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents,resulting in fine sediments deposition due to the weak hydrodynamic regime.
基金University Grants Commission (UGC) for funding to pursue this work
文摘This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the operational coastal ocean forecast system at Indian Na- tional Centre for Ocean Information Services (INCOIS). Evaluation is carried out based on comparisons of day-3 forecasts of surface wind with in situ and remote-sensing data. The results show that the model predicts the surface wind fields fairly accurately over the west coast of India, with high skill in predicting the surface wind during the pre-monsoon season. The model predicts the diurnal variability of the surface wind with reasonable accuracy. The model simulates the land-sea breeze cycle in the coastal region realistically, which is very clearly observed during the northeast monsoon and pre-monsoon season and is less prominent during the southwest monsoon season.
基金Supported by the UNESCO-IOC/WESTPAC Project"Response of marine hazards to climate change in the Western Pacific"the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes(No.GY0212172)+1 种基金the Open Foundation of the Key Laboratory of Data Analysis and ApplicationsState Oceanic Administration(No.LDAA-2012-02)
文摘Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data, we analyzed the reversal process of the South China Sea (SCS) westem boundary current (SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process. Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month. During the SCS monsoon reversal period, the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September. Subsequently, the southward Vietnam coastal boundary current strengthened. However, the northward Natuna Current maintained a summer state until mid-October. Thus, the balance between the southward and northward currents was lost when they met, their junction moved gradually southward. However, a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current (VOC) remained near its original latitude, Meanwhile, the VOC and associated dipole circulation system strengthened. After mid- October, the northward Natuna Current began to weaken, the loop current finally shed, becoming a cool ring. The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.
文摘The spatial and temporal distribution patterns of the zooplankton of Chabahar Bay, Gulf of Oman were investigated. Zooplankton sampling was collected twice a season at five stations in Chabahar Bay. Sampling was done during July-August 2007 (SW-monsoon), October-November 2007 (post-monsoon), January-February 2008 (NE-monsoon), and March-May 2008 (pre-monsoon). Five stations were investigated throughout Chabahar Bay. Four species of Oncaeidae (Oncaea media, Oncaea minuta, Oncaea venusta and Oncaea clevei) were identified. The abundance of Oncaea media was maximum in the post-monsoon (〉 700 ind..m3) and disappeared in pre-monsoon while Oncaea minuta was maximum in post-monsoon (〉 130 ind..m3) and disappeared in NE-monsoon and pre-monsoon. Oncaea venusta showed the highest abundance in post-monsoon (〉 370 ind..m3) and the lowest in pre-monsoon (〈 55 ind..m-3). The highest abundance of Oncaea clevei was in post-monsoon (〈 240 ind..m-3) and lowest in NE-monsoon. Overall, the highest abundance of Oncaeidae was observed in post-monsoon. The results showed that depth was the most important factor controlling abundance of the Oncaeidae. Spatially, the highest abundance of Oncaeidae species was found in off shore stations. Four species of this family showed positive correlation with depth. Also, O. venusta showed negative correlation with salinity that showed this species prefers low saline water.
基金supported by the National Natural Science Foundation of China[grant number 41375086],[grant number41305063]
文摘The East Asian summer climate is modulated by a low-pressure system over northern East Asia(NEAL) and a subtropical high over the western North Pacific. Many studies have focused on the subtropical high, but little is known about NEAL, especially its change in the future under global warming scenarios. This study investigates the projected change in NEAL in the late twenty-first century, using the outputs of 20 models from Phase 5 of the Coupled Model Intercomparison Project — specifically, their historical climate simulations(HIST) and future climate projections under the Representative Concentration Pathway 4.5(RCP4.5) and 8.5(RCP8.5) scenarios. The results show that the models capture the NEAL well in HIST. The NEAL is weakened in the late twenty-first century under the two RCP scenarios, with a stronger weakening under RCP8.5 than under RCP4.5.The weakened NEAL increases the geopotential height zonal gradient in the west and causes a southerly anomaly, which may bring more moisture and rainfall to northern East Asia.
基金supported by the Special Climate Change Research Program of China Meteorological Ad-ministration (No.062700s010c01)the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (No.201206024)
文摘This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipitation, wind speed, sunshine duration, and snow depth. Results show that annual mean temperature increased at a significant rate of 0.35℃ per decade, most notably in the Lesser Khingan Mountains and in winter. Annual rainfall had no obvious linear trend, while rainy days had a significant decreasing trend. So, the rain intensity increased. High-temperature days had a weak increasing trend, and low-temperature days and cold wave showed significant decreasing trends with rates of 3.9 d per decade and -0.64 times per decade, respectively. Frequency and spatial scope of low-temperature hazard reduced significantly. Warm days and warm nights significantly increased at 1.0 and 2.4 d per decade, while cold days and cold nights decreased significantly at -1.8 and -4.1 d per decade, respectively. The nighttime warming rate was much higher than that for daytime, indicating that nighttime warming had a greater contribution to the overall warming trend than daytime warming. The annual mean wind speed, gale days, and sunshine duration had significant decreasing trends at rates of-0.21 m s-1 per decade, -4.0 d per decade and -43.3 h per decade, respectively. The snow cover onset dates postponed at a rate of 1.2 d per decade, and the snow cover end date advanced at 1.5 d per decade, which leads to shorter snow cover duration by -2.7 d per decade. Meanwhile, the maximum snow depth decreased at -0.52 cm per decade. In addition, the snow cover duration shows a higher correlation with precipitation than with temperature, which suggests that precipitation plays a more important role in maintaining snow cover duration than temperature.
基金supported by the National Basic Research Program of China(No.2012CB955902)
文摘The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.
文摘On March 11, 2011, a simply unprecedented set of circumstances occurred in Northeast ]apan. Three disasters struck nearly simultaneously: a 9.0 earthquake, huge tsunami, and nuclear catastrophe. People and places were forever changed. Using a series of vignettes, this paper personalized these numbers through a review of rebuilding efforts, voluntarism, consumer food impacts, and consumer behavior associated with the imperfect storm that destroyed more than 46,000 buildings, killed more than 12,000, and resulted in damages from the tsunami and earthquake alone of between 16 and 25 trillion yen. Possible implications of these results are advanced.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
基金supported by the National Natural Science Foundation of China(Grant Nos.41302144&41130102)the Programme of Introducing Talents of Discipline to Universities(111 Project)(Grant No.B06026)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University(Grant No.LZUJBKY-2013-BT01)
文摘The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41505043 & 41372180)
文摘A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.
基金sponsored by National Natural Science Foundation of China (Grant Nos. 40890053 and 40890052)National Basic Research Program of China (Grant No. 2007CB815901)
文摘Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfall over eastern China. Corresponding to a higher (lower) IEANI, the EASM at mid-latitudes is stronger (weaker), and there is more (less) rainfall in North China and less (more) rainfall near the Yangtze River valley. To investigate long-term variation in the EASM, we reconstructed the BC 665AD 1985 IEANI based on reconstructed temperatures in Beijing and Tasmania, Australia. Over the past 2000 years, the reconstructed/EANI generally represents centennial-scale variations in the EASM and rainfall over eastem China. The correlation pattern between the reconstructed IEANI and rainfall over eastern China is similar to modem observations, implying that the correlation feature at centennial scales also occurred over the past 2000 years. With respect to longer-scale (several hundreds to one thousand years) IEANI variations and their correlations with rainfall, further verifications should be performed using various paleoclimatic proxy data.