The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i...The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.展开更多
Experiments were conducted in a U-shaped open-channel flume with the intention of investigating the bursting phenomena in the meander channel. The experimental results of the secondary flow fields and the Reynolds she...Experiments were conducted in a U-shaped open-channel flume with the intention of investigating the bursting phenomena in the meander channel. The experimental results of the secondary flow fields and the Reynolds shear stress distributions show that the velocity and velocity fluctuation in the transverse direction are not negligible. Moreover, the bursting process is investigated using the three-dimensional quadrant analysis, which is more accurate than using the traditional two-dimensional quadrant analysis for the meandering channel. It is obtained from the experimental results that the internal group of events occurs more frequently than the external group, particularly the internal ejection and internal sweep events. In addition, the transition probabilities of the movements, which are defined as the changes of events from the current situation to the next situation in a time series, show that the stable organizations of events are the most possible movements, whereas the cross organizations of events have the least possible movements.展开更多
The high degree of centerline curvature and cross-stream pressure gradient in S-inlet ducts gives rise to boundary layer separation and secondary flows, which result in poor pressure recovery and non-uniform flow in t...The high degree of centerline curvature and cross-stream pressure gradient in S-inlet ducts gives rise to boundary layer separation and secondary flows, which result in poor pressure recovery and non-uniform flow in the outlet interface with the engine. The flowfield in ducts is three-dimensional due to the existence of secondary flow, so ordinary two-dimensional actuations have poor effect on reforming the flow. Synthetic jet actuations extended in different spanwise positions were employed to manipulate the flow, and compared with the two-dimensional actuation, The interaction mechanics between flow separation and secondary flow was studied at first. It was found that the secondary flow enhanced Ol~ weakened flow separation depending on the spanwise position of synthetic jet actuators. Moreover, the J flow separation enhanced the secondary flow, thus causing lower pressure recovery and flow distortion in the duct outlet. The actuators located at different spanwise positions will weaken the secondary flows by improving the flow separation to get energetic and uniform main flow.展开更多
基金The National Natural Science Foundation of China (No.50976022)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period (No.2008BAJ12B02)
文摘The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.
基金Supported by National Natural Science Foundation of China(No.50979066 and No.51279124)Foundation for Creative Research Groups of National Natural Science Foundation of China(No.51021004)
文摘Experiments were conducted in a U-shaped open-channel flume with the intention of investigating the bursting phenomena in the meander channel. The experimental results of the secondary flow fields and the Reynolds shear stress distributions show that the velocity and velocity fluctuation in the transverse direction are not negligible. Moreover, the bursting process is investigated using the three-dimensional quadrant analysis, which is more accurate than using the traditional two-dimensional quadrant analysis for the meandering channel. It is obtained from the experimental results that the internal group of events occurs more frequently than the external group, particularly the internal ejection and internal sweep events. In addition, the transition probabilities of the movements, which are defined as the changes of events from the current situation to the next situation in a time series, show that the stable organizations of events are the most possible movements, whereas the cross organizations of events have the least possible movements.
基金supported by the National Natural Science Foundation of China (Grant No. 50976007)
文摘The high degree of centerline curvature and cross-stream pressure gradient in S-inlet ducts gives rise to boundary layer separation and secondary flows, which result in poor pressure recovery and non-uniform flow in the outlet interface with the engine. The flowfield in ducts is three-dimensional due to the existence of secondary flow, so ordinary two-dimensional actuations have poor effect on reforming the flow. Synthetic jet actuations extended in different spanwise positions were employed to manipulate the flow, and compared with the two-dimensional actuation, The interaction mechanics between flow separation and secondary flow was studied at first. It was found that the secondary flow enhanced Ol~ weakened flow separation depending on the spanwise position of synthetic jet actuators. Moreover, the J flow separation enhanced the secondary flow, thus causing lower pressure recovery and flow distortion in the duct outlet. The actuators located at different spanwise positions will weaken the secondary flows by improving the flow separation to get energetic and uniform main flow.