Traffic network is an importance asp ect of researching controllable parameters of an urban spatial morpholo-gy.Based on GIS,traffic network str ucture complexity can be understood by using fractal geometry in which t...Traffic network is an importance asp ect of researching controllable parameters of an urban spatial morpholo-gy.Based on GIS,traffic network str ucture complexity can be understood by using fractal geometry in which th e length-radius dimension describes change of network density,and ramification-radius dimension describes complexity and accessibility of urban network.It i s propitious to analyze urban traffic network and to understand dynamic c hange process of traffic network using expanding f ractal-dimension quantification.Meanwhile the length-radius dimension and ramifica-tion-radius dimension could be rega rd as reference factor of quantitative describing urban traffic network.展开更多
According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which co...According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.展开更多
An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuz...An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.展开更多
Metamodeling techniques are commonly used to replace expensive computer simulations in robust design problems. Due to the discrepancy between the simulation model and metamodel, a robust solution in the infeasible reg...Metamodeling techniques are commonly used to replace expensive computer simulations in robust design problems. Due to the discrepancy between the simulation model and metamodel, a robust solution in the infeasible region can be found according to the prediction error in constraint responses. In deterministic optimizations, balancing the predicted constraint and metamodeling uncertainty, expected violation (EV) criterion can be used to explore the design space and add samples to adaptively improve the fitting accuracy of the constraint boundary. However in robust design problems, the predicted error of a robust design constraint cannot be represented by the metamodel prediction uncertainty directly. The conventional EV-based sequential sampling method cannot be used in robust design problems. In this paper, by investigating the effect of metamodeling uncertainty on the robust design responses, an extended robust expected violation (REV) function is proposed to improve the prediction accuracy of the robust design constraints. To validate the benefits of the proposed method, a crashworthiness-based lightweight design example, i.e. a highly nonlinear constrained robust design problem, is given. Results show that the proposed method can mitigate the prediction error in robust constraints and ensure the feasibility of the robust solution.展开更多
文摘Traffic network is an importance asp ect of researching controllable parameters of an urban spatial morpholo-gy.Based on GIS,traffic network str ucture complexity can be understood by using fractal geometry in which th e length-radius dimension describes change of network density,and ramification-radius dimension describes complexity and accessibility of urban network.It i s propitious to analyze urban traffic network and to understand dynamic c hange process of traffic network using expanding f ractal-dimension quantification.Meanwhile the length-radius dimension and ramifica-tion-radius dimension could be rega rd as reference factor of quantitative describing urban traffic network.
基金Project(2006BAK04B0302)supported by the National Science and Technology Pillar Program during the 11th Five-year Plan of China
文摘According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.
基金National Natural Science Foundation of China (No.60774023)
文摘An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.
基金Foundation item. the National Natural Science Foundation of China (No. 50875164)
文摘Metamodeling techniques are commonly used to replace expensive computer simulations in robust design problems. Due to the discrepancy between the simulation model and metamodel, a robust solution in the infeasible region can be found according to the prediction error in constraint responses. In deterministic optimizations, balancing the predicted constraint and metamodeling uncertainty, expected violation (EV) criterion can be used to explore the design space and add samples to adaptively improve the fitting accuracy of the constraint boundary. However in robust design problems, the predicted error of a robust design constraint cannot be represented by the metamodel prediction uncertainty directly. The conventional EV-based sequential sampling method cannot be used in robust design problems. In this paper, by investigating the effect of metamodeling uncertainty on the robust design responses, an extended robust expected violation (REV) function is proposed to improve the prediction accuracy of the robust design constraints. To validate the benefits of the proposed method, a crashworthiness-based lightweight design example, i.e. a highly nonlinear constrained robust design problem, is given. Results show that the proposed method can mitigate the prediction error in robust constraints and ensure the feasibility of the robust solution.