An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure...A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.展开更多
This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In thi...This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.展开更多
In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed...In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed, the relationship between the coefficients of dynamic equation is derived so as to establish the canonical equations. The error accumulation of dynamics can be eliminated by using canonical equations and the symplectic integral method so that the computational accuracy can be ensured effectively. As an example, a planar robotics system is considered.展开更多
A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for por...A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.展开更多
Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-ori...Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-oriented knowledge representation, the heuristic inference engine with an improved depth-first search (DFS) and the graphical user interface. A diagnositic ES instance for debris on magnetic chip detectors (MCDs) is then created with the EST. The spot running shows that the rule-type EST enhances the abilities of knowledge representation and heuristic inference, and breaks a new way for the rapid construction and implementation of ES.展开更多
The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens...The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.展开更多
In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator(CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiff...In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator(CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.展开更多
The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional...The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.展开更多
The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation ...The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.展开更多
The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and te...The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and technology is demonstrating the intense unification trends of physics and biology and a holistic science and technology era is about to start. The physics and biology unify on the basis of the four seasons' law, which is the most important rule of the universe. Life is defined as the four seasons' whole with the structure and process of four seasons. The organism is basically structured into a dual four-season body by state-varying, state-stabilizing and control organizations. Animals, the Solar System and the earth are all the dual four-season bodies. In the unity between physics and biology, the inorganic life materials and inorganic life body can be manufactured artificially.展开更多
To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme...To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.展开更多
In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics m...In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics model of the mechanical structure and flight principle of the quadrotor aircraft,and used the Newton-Euler method to derive the non-linear dynamic equations.Aiming at improving the modeling accuracy and system integrity of the quadrotor,the physical system modeling was combined with the CAD software and the Matlab/Simscape toolbox.The three-dimensional quadrotor solid model built by CAD software was imported into the Simscape simulation platform to construct the body and power system model of the quadrotor.Based on this,the control algorithm designed by Simulink was added to the simulation platform to facilitate the experiment verification and parameter tuning.The simulation results show that the designed aircraft can achieve hover and tracking well and meet the control performance requirements of the system.展开更多
Propose a new sensor-based motion planning approach of Situated-Bug, which is composed of goal-oriented behavior, boundary following behavior and goal-oriented obstacle avoidance behavior, which are based on fuzzy con...Propose a new sensor-based motion planning approach of Situated-Bug, which is composed of goal-oriented behavior, boundary following behavior and goal-oriented obstacle avoidance behavior, which are based on fuzzy control. The situated-Bug selects its behaviors according to robot orientation, instead of positions and hit points like other Bug algorithms, and its convergence proves robust to sensor noise, and it can guide the robots running for long rang traverse. At the same time, the design of the Situated-Bug is presented. Simulation results show that the approach is effective and practical.展开更多
Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov...Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.展开更多
Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phospho...Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.展开更多
A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To impleme...A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To implement intelligent and interactive rehabilitation exercises, motion intention of patients' up- per limb is introduced into control methods of rehabilitation exercises. In passive motions, according to the character of unilateral impaired, multi-channels surface electromyogram (sEMG) signals of patients' healthy arm muscles are acquired and analyzed to recognize the upper limb motions, then drive the robot and assist paralysis ann's rehabilitation exercises. In active-resistant motions, because patients are re- covered with some muscle forces and active motion ability after a rehabilitation period, the terminal force loaded on the robot by an impaired arm are estimated with multi-channel joint torque sensors, according to which, the terminal velocity of the robot is controlled to drive the joint motions with a damp controller.展开更多
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.
文摘A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.
文摘This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.
文摘In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed, the relationship between the coefficients of dynamic equation is derived so as to establish the canonical equations. The error accumulation of dynamics can be eliminated by using canonical equations and the symplectic integral method so that the computational accuracy can be ensured effectively. As an example, a planar robotics system is considered.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2007AA04Z231)~~
文摘A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.
文摘Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-oriented knowledge representation, the heuristic inference engine with an improved depth-first search (DFS) and the graphical user interface. A diagnositic ES instance for debris on magnetic chip detectors (MCDs) is then created with the EST. The spot running shows that the rule-type EST enhances the abilities of knowledge representation and heuristic inference, and breaks a new way for the rapid construction and implementation of ES.
文摘The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.
基金supported by FRC Tier I grants R397000156112 and R397000157112,National University of Singapore
文摘In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator(CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030 60404021) supported bythe National Natural Science Foundation of China
文摘The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.
文摘The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.
文摘The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and technology is demonstrating the intense unification trends of physics and biology and a holistic science and technology era is about to start. The physics and biology unify on the basis of the four seasons' law, which is the most important rule of the universe. Life is defined as the four seasons' whole with the structure and process of four seasons. The organism is basically structured into a dual four-season body by state-varying, state-stabilizing and control organizations. Animals, the Solar System and the earth are all the dual four-season bodies. In the unity between physics and biology, the inorganic life materials and inorganic life body can be manufactured artificially.
基金Project(51805368) supported by the National Natural Science Foundation of ChinaProject(2018QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(DMETKF2021017) supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,China。
文摘To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.
文摘In order to speed up and simplify the design of the quadrotor unmanned aerial vehicle(UAV)and carry out experimental simulation and verification of relevant control algorithms,this paper analyzed the system dynamics model of the mechanical structure and flight principle of the quadrotor aircraft,and used the Newton-Euler method to derive the non-linear dynamic equations.Aiming at improving the modeling accuracy and system integrity of the quadrotor,the physical system modeling was combined with the CAD software and the Matlab/Simscape toolbox.The three-dimensional quadrotor solid model built by CAD software was imported into the Simscape simulation platform to construct the body and power system model of the quadrotor.Based on this,the control algorithm designed by Simulink was added to the simulation platform to facilitate the experiment verification and parameter tuning.The simulation results show that the designed aircraft can achieve hover and tracking well and meet the control performance requirements of the system.
文摘Propose a new sensor-based motion planning approach of Situated-Bug, which is composed of goal-oriented behavior, boundary following behavior and goal-oriented obstacle avoidance behavior, which are based on fuzzy control. The situated-Bug selects its behaviors according to robot orientation, instead of positions and hit points like other Bug algorithms, and its convergence proves robust to sensor noise, and it can guide the robots running for long rang traverse. At the same time, the design of the Situated-Bug is presented. Simulation results show that the approach is effective and practical.
基金Projects(2009AA093302,2002AA401003)supported by the National High-Tech Research and Development Program of ChinaProject(YYYJ-0917)supported by the Knowledge Innovation of Chinese Academy of Sciences+1 种基金Projects(61273334,61233013)supported by the National Natural Science Foundation of ChinaProject(2011010025-401)supported by the Natural Science Foundation of Liaoning Province,China
文摘Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.
基金Project(51974362) supported by the National Natural Science Foundation of ChinaProject(2282020cxqd055) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021-QYC-10050-25631) supported by the Department of Emergency Management of Hunan Province,China。
文摘Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.
基金supported by the High Technology Research and Development Programme of China(No.2004AA421030)
文摘A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To implement intelligent and interactive rehabilitation exercises, motion intention of patients' up- per limb is introduced into control methods of rehabilitation exercises. In passive motions, according to the character of unilateral impaired, multi-channels surface electromyogram (sEMG) signals of patients' healthy arm muscles are acquired and analyzed to recognize the upper limb motions, then drive the robot and assist paralysis ann's rehabilitation exercises. In active-resistant motions, because patients are re- covered with some muscle forces and active motion ability after a rehabilitation period, the terminal force loaded on the robot by an impaired arm are estimated with multi-channel joint torque sensors, according to which, the terminal velocity of the robot is controlled to drive the joint motions with a damp controller.