期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
信创背景下“人工智能+X”人才培养体系探索 被引量:4
1
作者 朱锐 杨云 +2 位作者 张璇 何臻力 陈晔婷 《计算机教育》 2024年第3期165-171,共7页
针对当前国内高校人工智能人才培养方案缺少统一标准、对国产化重视不足等问题,提出面向信创人才的“人工智能+X”培养体系:设立人工智能信创课程,搭建实习实践平台,建立教学实验生态。介绍近3年在本专业的建设实践,说明所提培养方案的... 针对当前国内高校人工智能人才培养方案缺少统一标准、对国产化重视不足等问题,提出面向信创人才的“人工智能+X”培养体系:设立人工智能信创课程,搭建实习实践平台,建立教学实验生态。介绍近3年在本专业的建设实践,说明所提培养方案的可行性。 展开更多
关键词 信创 人工智能 人才培养体系 双一流高校 “人工智能+x”
下载PDF
“人工智能+X”复合型人才培养模式探索与实践——以重庆移通学院为例 被引量:3
2
作者 李文娟 张媛 《互联网周刊》 2023年第4期61-63,共3页
随着人工智能技术的飞速发展,社会各行业对人工智能复合型人才的需求越来越旺盛。重庆移通学院通过树立培养“人工智能+X”学科交叉融合的复合型人才理念,对人工智能专业人才培养模式进行了探索和实践,建立起人工智能多元的专业型人才... 随着人工智能技术的飞速发展,社会各行业对人工智能复合型人才的需求越来越旺盛。重庆移通学院通过树立培养“人工智能+X”学科交叉融合的复合型人才理念,对人工智能专业人才培养模式进行了探索和实践,建立起人工智能多元的专业型人才培养构架,注重与企业深度合作,以社会需求为导向、以实际应用为驱动,不断完善知识更新体系。重庆移通学院对“人工智能+X”多元复合型人才培养模式的研究,为人工智能专业人才的培养提供了参考经验。 展开更多
关键词 “人工智能+x” 复合型 培养模式
下载PDF
“人工智能+X”创新型人才培养模式的教学改革探讨 被引量:4
3
作者 黄淋云 林文斌 苏玉洁 《中国现代教育装备》 2022年第9期147-149,共3页
高等教育代表一个国家最高的教育水平,培养造就一批有创新意识、创新能力的高素质人才是各大高校责无旁贷而又迫在眉睫的重要任务。在人工智能技术和“创新、创业、创造”的时代大背景下,结合创新型人才培养的要求,以电子信息工程专业为... 高等教育代表一个国家最高的教育水平,培养造就一批有创新意识、创新能力的高素质人才是各大高校责无旁贷而又迫在眉睫的重要任务。在人工智能技术和“创新、创业、创造”的时代大背景下,结合创新型人才培养的要求,以电子信息工程专业为例,提出“人工智能+X”创新型人才培养模式,旨在培养满足社会需求的创新型人才。 展开更多
关键词 “人工智能+x” 创新型人才培养 教学改革
下载PDF
产教融合下职业院校开展“人工智能+X”复合型人才培养模式的研究 被引量:3
4
作者 李晓 《创新创业理论研究与实践》 2023年第15期117-119,共3页
该文以“人工智能+X”复合型人才培养模式为研究对象,在新工科建设、产教融合的教育生态环境下,针对人工智能人才培养面临的新问题,在新工科典型人才培养模式的基础上,通过对“人工智能+X”专业课程体系、人工智能人才培养的新特点进行... 该文以“人工智能+X”复合型人才培养模式为研究对象,在新工科建设、产教融合的教育生态环境下,针对人工智能人才培养面临的新问题,在新工科典型人才培养模式的基础上,通过对“人工智能+X”专业课程体系、人工智能人才培养的新特点进行研究,结合烟台科技学院人工智能人才培养实践,提出适合职业院校的人工智能人才培养新模式,为提高职业院校人工智能人才培养质量提出建设性的实施策略和建议。 展开更多
关键词 “人工智能+x” 产教融合 人才培养 复合型人才 新工科 课程体系
原文传递
新工科的兴起与智能复合人才培养的研究 被引量:3
5
作者 孙红 王瑞琪 +2 位作者 付东翔 巨志勇 尹钟 《计算机教育》 2019年第10期27-30,共4页
针对人工智能教育的发展、高校传统工科建设的挑战、新工科的定义及智能复合人才培养,进一步阐述和研究新工科的智能复合人才培养方法,特别是'人工智能+X'人才培养的理念和方法。
关键词 新工科 人才培养 “人工智能+x”
下载PDF
Artificial intelligence models based on non-contrast chest CT for measuring bone mineral density
6
作者 DUAN Wei YANG Guoqing +6 位作者 LI Yang SHI Feng YANG Lian XIONG Xin CHEN Bei LI Yong FU Quanshui 《中国医学影像技术》 CSCD 北大核心 2024年第8期1231-1235,共5页
Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quan... Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT. 展开更多
关键词 OSTEOPOROSIS bone density tomography x-ray computed artificial intelligence
下载PDF
Self-supervised learning artificial intelligence noise reduction technology based on the nearest adjacent layer in ultra-low dose CT of urinary calculi
7
作者 ZHOU Cheng LIU Yang +4 位作者 QIU Yingwei HE Daijun YAN Yu LUO Min LEI Youyuan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1249-1253,共5页
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho... Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT. 展开更多
关键词 urinary calculi tomography x-ray computed artificial intelligence prospective studies
下载PDF
“一带一路”背景下“人工智能+商务英语”专业复合型人才培养模式的研究与实践 被引量:4
8
作者 孙志格 《现代英语》 2021年第18期121-123,共3页
自习近平总书记提出共建"21世纪丝绸之路经济带"和21世纪"海上丝绸之路"的指示后,社会及企业对复合型商务英语专业人才的需求也有了显著的增长。这使得传统的人才培养体系难以满足"一带一路"倡议下社会... 自习近平总书记提出共建"21世纪丝绸之路经济带"和21世纪"海上丝绸之路"的指示后,社会及企业对复合型商务英语专业人才的需求也有了显著的增长。这使得传统的人才培养体系难以满足"一带一路"倡议下社会对复合型人才的新要求。《新一代人工智能发展规划》鼓励高校在原有基础上拓宽人工智能专业教育内容,形成"人工智能+X"复合型专业培养新模式,注重人工智能与数学、生物学等学科专业教育的交叉融合。在对当前国内高校的复合型商务英语专业人才培养过程中存在的问题进行分析的基础上,文章提出了"一带一路"背景下高校"人工智能+商务英语"复合型人才的培养模式和策略,以期为"一带一路"建设输送更多优质人才。 展开更多
关键词 “一带一路” “人工智能+x” “人工智能+商务英语”
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部