To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled f...To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.展开更多
A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of th...A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of this paper reveal several evidently dry and cold events that may coincide with the Oldest Dryas, the Older Dryas, the Younger Dryas in the late deglacial period. Two relatively wetter and warmer phases occurred in ca. 15,000-14,400 cal yr B.P. and 13,500-12,800 cal yr B.P. respectively may correspond to the Boiling and Allerod warming events. The Younger Dryas event (ca. 12,800-11,500 cal yr B.P.) revealed by multi-proxies was characterized by relatively colder and drier climate. A warmer and wetter climate, occurred in ca. 10,000~5000 cal yr B.P., was consistent with the Holoeene Optimum, which coincided with the maximum Northern Hemisphere insolation. The "8.2kyr cool event" and even the "8.8kyr cool event" were indicated as well from our sediment core. A dry mid-Holocene period (ca. 60000 3000 cal yr B.P.) indicated by multi-proxies does not follow the traditional concept of the wet mid-Holocene conditions observed in other regions in China.展开更多
The Xiannvshan fault zone, lying along the western margin of the Huangling anticline, is one of the most important fault zones in the Three Gorges reservoir area. The fault experienced strong activity during the Cenoz...The Xiannvshan fault zone, lying along the western margin of the Huangling anticline, is one of the most important fault zones in the Three Gorges reservoir area. The fault experienced strong activity during the Cenozoic Era. The question of whether the fault zone goes through the Yangtze River has been one of the key problems faced in previous studies as it has a significant influence upon the assessment of geological hazards and earthquake stability in the reservoir area. Based on tectonic and geomorphic observations along the fault zone between the Baixianchi village in Changyang county and Huangkou village in Zigui town, together with the comparisons between the geology in Guizhou and Quyuan town in the north bank of the Yangtze River and the Xiannvshan fault zone, it is suggested that the north end of this fault zone is located around Huangkou village and does not go through the Yangtze rivers northward. The evidence is as follows: ① On the basis of field data collection, it is found that the Xiannvshan Fault zone, which stretches 80km, underwent thrust movement in the Cenozoic period, resulting in ravines and fault scarps, topographically. Whereas, on the northern bank of the Yangtze River, faults are rarely found, and most of the faults are developed in the Jurassic strata,without topographical effects. Therefore, the Xiannvshan Fault zone has not stretched to the north bank of the Yangtze River. ② The fault gouge and tectonite zone were found developed on the Xiannvshan Fault zone at Baixianchi village, but only a tectonite zone was found at Zhouping village. There are also some branch faults close to the northern end of the fault zone. So, the activity of the fault zone weakened from south to north in Cenozoic. The fault zone extends northward and dies out at Huangkou. It doesn't stretch forward any longer as indicated by continuous strata, sparse joints, and small folds, etc.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.41076032, 40776030)the Special Program 908 on investigation and research of the environment under the sea (No. 908-01-CJ03)
文摘To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.
基金Under the auspices of National Natural Science Foundation of China (No. 40671189)Natural Science Foundation of Guangdong Province (No. 8151063101000044, 06025042)the Fok Ying Tung Education Foundation (No. 91021)
文摘A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of this paper reveal several evidently dry and cold events that may coincide with the Oldest Dryas, the Older Dryas, the Younger Dryas in the late deglacial period. Two relatively wetter and warmer phases occurred in ca. 15,000-14,400 cal yr B.P. and 13,500-12,800 cal yr B.P. respectively may correspond to the Boiling and Allerod warming events. The Younger Dryas event (ca. 12,800-11,500 cal yr B.P.) revealed by multi-proxies was characterized by relatively colder and drier climate. A warmer and wetter climate, occurred in ca. 10,000~5000 cal yr B.P., was consistent with the Holoeene Optimum, which coincided with the maximum Northern Hemisphere insolation. The "8.2kyr cool event" and even the "8.8kyr cool event" were indicated as well from our sediment core. A dry mid-Holocene period (ca. 60000 3000 cal yr B.P.) indicated by multi-proxies does not follow the traditional concept of the wet mid-Holocene conditions observed in other regions in China.
基金funded by Geological Disaster Preventing Project of the Third Stage of Three Gorges Project of Ministry of Land and Resources,China (SXKY3-5)the Basic Research Project of the National Non-profit Research Institutes,Institute of Geology,CEA(IGCEA1001)
文摘The Xiannvshan fault zone, lying along the western margin of the Huangling anticline, is one of the most important fault zones in the Three Gorges reservoir area. The fault experienced strong activity during the Cenozoic Era. The question of whether the fault zone goes through the Yangtze River has been one of the key problems faced in previous studies as it has a significant influence upon the assessment of geological hazards and earthquake stability in the reservoir area. Based on tectonic and geomorphic observations along the fault zone between the Baixianchi village in Changyang county and Huangkou village in Zigui town, together with the comparisons between the geology in Guizhou and Quyuan town in the north bank of the Yangtze River and the Xiannvshan fault zone, it is suggested that the north end of this fault zone is located around Huangkou village and does not go through the Yangtze rivers northward. The evidence is as follows: ① On the basis of field data collection, it is found that the Xiannvshan Fault zone, which stretches 80km, underwent thrust movement in the Cenozoic period, resulting in ravines and fault scarps, topographically. Whereas, on the northern bank of the Yangtze River, faults are rarely found, and most of the faults are developed in the Jurassic strata,without topographical effects. Therefore, the Xiannvshan Fault zone has not stretched to the north bank of the Yangtze River. ② The fault gouge and tectonite zone were found developed on the Xiannvshan Fault zone at Baixianchi village, but only a tectonite zone was found at Zhouping village. There are also some branch faults close to the northern end of the fault zone. So, the activity of the fault zone weakened from south to north in Cenozoic. The fault zone extends northward and dies out at Huangkou. It doesn't stretch forward any longer as indicated by continuous strata, sparse joints, and small folds, etc.