Biodiesel, an environmentally friendly biofuel with similar flow and combustion properties as petroleum-based diesel and low emission profile, which is commonly prepared from triglyceride (TG) sources such as vegeta...Biodiesel, an environmentally friendly biofuel with similar flow and combustion properties as petroleum-based diesel and low emission profile, which is commonly prepared from triglyceride (TG) sources such as vegetable oils, animal fats, and waste greases, holds good promises as an alternative to diesel fuel. Alternate fuels for diesel engines have become increasingly important due to diminishing petroleum reserves and awareness of the increased environmental consequences of emissions from petroleum-fuelled engines, as the world is confronted with an energy crisis. Currently, the production of methyl or ethyl esters from edible oils is much more expensive than that of diesel fuels due to the relatively high costs of vegetable oils (about four times the cost of diesel in China). Methyl esters produced from such oils can be expected to compete economically with diesel fuels, and there is a need to explore low cost alternate feedstocks for the production of biodiesel. Rapeseed is little sensitive to crop input levels, allowing reduction of tillage, irrigation, and weed control. Significant yield increases will be attained using new hybrids and better crop management. Rapeseed cultures in seasonal set-aside lands such as Dongting Lake surroundings can significantly decreases the amount of subsides spent for agricultural overproduction in China, which leads to an increase in farmer incomes as well as the creation of new employment. This significantly lowers production costs, reduces environmental impact, and increases final energy gains. Our rapeseed oil is good source for biodiesel with respect to high oil content and proper fatty acid composition.展开更多
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts...The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.展开更多
The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst suppo...The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst support to replace the existing expensive ones. The aim of the present research is to prepare new metal-immobilized complexes based on rice husks and to study their catalytic activity in the oxidation of cyclohexene with tert-butylhydroperoxide. The corresponding metal complexes were obtained by interaction of RRH (raw rice husks) or thermally treated WRHA in air atmosphere. The complexes were obtained from aqueous solutions of various salts such as FeCl2.4H2O, COCl2.6H2O, VOSO4.5H2O and Na2MoO4.2H2O at room temperature. The rice husks-supported metal complexes were identified by infrared spectroscopy. The structure of the iron-containing polymeric materials was evaluated by Mossbauer spectroscopy. The catalytic activity of the molybdenum-containing complex catalyst in the principal epoxidation reaction was higher than that of the vanadium-containing one, whereas, the opposite order of activities was found for the side reaction of allylic hydroxylation of cyclohexene. Under selected reaction conditions, the yields of the principal reaction products cyclohexene oxide (1,2-epoxycyclohexane) and 2-cyclohexene-1-ol were 36.4% and 22.7%, respectively.展开更多
This paper considers the problem about optimization of proportional reinsurance in the setting of diffusion models. The authors take into account non-cheap proportional reinsurance and bankruptcy value simultaneously....This paper considers the problem about optimization of proportional reinsurance in the setting of diffusion models. The authors take into account non-cheap proportional reinsurance and bankruptcy value simultaneously. The objective is to find the risk control policies which maximize the total discounted reserve and the bankruptcy value. Results show that, the optimal risk control policies and corresponding optimal return functions vary, depending both on the range of bankruptcy value and the relationship between the premium rate of insurance and that of reinsurance.展开更多
An inexpensive BF3·Et20-catalyzed annulation reaction of arylacetaldehydes with arylalkynes has been developed. Various substituted phenylacetaldehydes and phenylacetylenes can undergo this reaction, producing co...An inexpensive BF3·Et20-catalyzed annulation reaction of arylacetaldehydes with arylalkynes has been developed. Various substituted phenylacetaldehydes and phenylacetylenes can undergo this reaction, producing corresponding α-aryl substituted naphthalene derivatives. Use of inexpensive and readily available BF3·Et20 catalyst constitutes the most attractive advantage of this transformation.展开更多
We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast firs...We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.展开更多
文摘Biodiesel, an environmentally friendly biofuel with similar flow and combustion properties as petroleum-based diesel and low emission profile, which is commonly prepared from triglyceride (TG) sources such as vegetable oils, animal fats, and waste greases, holds good promises as an alternative to diesel fuel. Alternate fuels for diesel engines have become increasingly important due to diminishing petroleum reserves and awareness of the increased environmental consequences of emissions from petroleum-fuelled engines, as the world is confronted with an energy crisis. Currently, the production of methyl or ethyl esters from edible oils is much more expensive than that of diesel fuels due to the relatively high costs of vegetable oils (about four times the cost of diesel in China). Methyl esters produced from such oils can be expected to compete economically with diesel fuels, and there is a need to explore low cost alternate feedstocks for the production of biodiesel. Rapeseed is little sensitive to crop input levels, allowing reduction of tillage, irrigation, and weed control. Significant yield increases will be attained using new hybrids and better crop management. Rapeseed cultures in seasonal set-aside lands such as Dongting Lake surroundings can significantly decreases the amount of subsides spent for agricultural overproduction in China, which leads to an increase in farmer incomes as well as the creation of new employment. This significantly lowers production costs, reduces environmental impact, and increases final energy gains. Our rapeseed oil is good source for biodiesel with respect to high oil content and proper fatty acid composition.
文摘The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.
文摘The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst support to replace the existing expensive ones. The aim of the present research is to prepare new metal-immobilized complexes based on rice husks and to study their catalytic activity in the oxidation of cyclohexene with tert-butylhydroperoxide. The corresponding metal complexes were obtained by interaction of RRH (raw rice husks) or thermally treated WRHA in air atmosphere. The complexes were obtained from aqueous solutions of various salts such as FeCl2.4H2O, COCl2.6H2O, VOSO4.5H2O and Na2MoO4.2H2O at room temperature. The rice husks-supported metal complexes were identified by infrared spectroscopy. The structure of the iron-containing polymeric materials was evaluated by Mossbauer spectroscopy. The catalytic activity of the molybdenum-containing complex catalyst in the principal epoxidation reaction was higher than that of the vanadium-containing one, whereas, the opposite order of activities was found for the side reaction of allylic hydroxylation of cyclohexene. Under selected reaction conditions, the yields of the principal reaction products cyclohexene oxide (1,2-epoxycyclohexane) and 2-cyclohexene-1-ol were 36.4% and 22.7%, respectively.
文摘This paper considers the problem about optimization of proportional reinsurance in the setting of diffusion models. The authors take into account non-cheap proportional reinsurance and bankruptcy value simultaneously. The objective is to find the risk control policies which maximize the total discounted reserve and the bankruptcy value. Results show that, the optimal risk control policies and corresponding optimal return functions vary, depending both on the range of bankruptcy value and the relationship between the premium rate of insurance and that of reinsurance.
基金the financial supports from Sichuan Provincial Department of Education (11ZA108)National Natural Science Foundation of China (21202109 and 21072140)+1 种基金Special Funds of Sichuan Normal University for Sharing the Large Precision Equipments (DJ2012-07,DJ2011-16)Sichuan Normal University
文摘An inexpensive BF3·Et20-catalyzed annulation reaction of arylacetaldehydes with arylalkynes has been developed. Various substituted phenylacetaldehydes and phenylacetylenes can undergo this reaction, producing corresponding α-aryl substituted naphthalene derivatives. Use of inexpensive and readily available BF3·Et20 catalyst constitutes the most attractive advantage of this transformation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11690022,11435006,11447601,and 11647601)the Strategic Priority Research Program of China Academy Sciences(Grant No.XDB23030100)+1 种基金the Peng Huanwu Innovation Research Center for Theoretical Physics(Grant No.11747601)the Key Research Program of Frontier Sciences of China Academy Sciences
文摘We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.