A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ 4 state is constructed to investigate the possibility of remotely transferred hidden information.Moreover,the multipartite entangled sta...A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ 4 state is constructed to investigate the possibility of remotely transferred hidden information.Moreover,the multipartite entangled states are become a hectic topic due to its important applications and deep effects on aspects of quantum information.Then,the scheme consists of sharing the correlation of four particle GHZ4 states between the legitimate users.After insuring the security of the quantum channel,they begin to hide the secret information in the cover of message.Comparing the scheme with the previous quantum steganographies,capacity and imperceptibility of hidden message are good.The security of the present scheme against many attacks is also discussed.展开更多
Camouflage is ubiquitous in the natural world and benefits both predators and prey. Amongst the range of conceal- ment strategies, disruptive coloration is thought to visually fragment an animal's' outline, thereby ...Camouflage is ubiquitous in the natural world and benefits both predators and prey. Amongst the range of conceal- ment strategies, disruptive coloration is thought to visually fragment an animal's' outline, thereby reducing its rate of discovery. Here, I propose two non-mutually exclusive hypotheses for how disruptive camouflage functions, and describe the visual me- chanisms that might underlie them. (1) The local edge disruption hypothesis states that camouflage is achieved by breaking up edge information. (2) The global feature disruption hypothesis states camouflage is achieved by breaking up the characteristic features of an animal (e.g., overall shape or facial features). Research clearly shows that putatively disruptive edge markings do increase concealment; however, few tests have been undertaken to determine whether this survival advantage is attributable to the distortion of features, so the global feature disruption hypothesis is under studied. In this review the evidence for global feature disruption is evaluated. Further, I address if object recognition processing provides a feasible mechanism for animals' features to influence concealment. This review concludes that additional studies are needed to test if disruptive camouflage operates through the global feature disruption and proposes future research directions [Current Zoology 61 (4): 708-717, 2015].展开更多
文摘A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ 4 state is constructed to investigate the possibility of remotely transferred hidden information.Moreover,the multipartite entangled states are become a hectic topic due to its important applications and deep effects on aspects of quantum information.Then,the scheme consists of sharing the correlation of four particle GHZ4 states between the legitimate users.After insuring the security of the quantum channel,they begin to hide the secret information in the cover of message.Comparing the scheme with the previous quantum steganographies,capacity and imperceptibility of hidden message are good.The security of the present scheme against many attacks is also discussed.
文摘Camouflage is ubiquitous in the natural world and benefits both predators and prey. Amongst the range of conceal- ment strategies, disruptive coloration is thought to visually fragment an animal's' outline, thereby reducing its rate of discovery. Here, I propose two non-mutually exclusive hypotheses for how disruptive camouflage functions, and describe the visual me- chanisms that might underlie them. (1) The local edge disruption hypothesis states that camouflage is achieved by breaking up edge information. (2) The global feature disruption hypothesis states camouflage is achieved by breaking up the characteristic features of an animal (e.g., overall shape or facial features). Research clearly shows that putatively disruptive edge markings do increase concealment; however, few tests have been undertaken to determine whether this survival advantage is attributable to the distortion of features, so the global feature disruption hypothesis is under studied. In this review the evidence for global feature disruption is evaluated. Further, I address if object recognition processing provides a feasible mechanism for animals' features to influence concealment. This review concludes that additional studies are needed to test if disruptive camouflage operates through the global feature disruption and proposes future research directions [Current Zoology 61 (4): 708-717, 2015].