Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared thr...Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.展开更多
In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation er...In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.展开更多
Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, m...Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.展开更多
Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. T...Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection.展开更多
文摘Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.
文摘In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.
基金supported partly by“973 Program”under Grant No.2014CB340701by the National Natural Science Foundation of China under Grant Nos.61625205,91418204 and 61625206+2 种基金by CDZ Project CAP(GZ 1023)by the CAS/SAFEA International Partnership Program for Creative Research Teamssupported partly by the National Natural Science Foundation of China under Grant Nos.11290141,11271034 and 61532019
文摘Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.
文摘Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection.