To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it r...To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu’ yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.展开更多
Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for th...Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.展开更多
A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the ...A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the 21st Chinese National Antarctica Research Expedition (CHINARE) in January 2005. Two independent methods were used for dating the ice core, volcanic event markers shown by prominent non-sea-salt sulfate (nss-SO4^2-) and the Herron and Langway (H-L) firn densification model. Six promi- nent volcanic events (Agung 1963 AD, Tambora 1815 AD, Kuwae 1453 AD, Unknown 1259 AD, Taupo 186 AD and Pinatubo 1050 BC) were identified by comparison with other Antarctic ice cores. Based on the mean accumulation rates be- tween adjacent events, we estimate the age at the tim pore close-off depth (102 m) was 3516±100 a BP. This is the oldest close-off age ever reported from the Antarctic and the Greenland ice sheets. Calculations using the H-L model show that the age at the same depth is 3581±100 a BP. The two dating techniques differ by 65 years, or -1.8% of the record. We calculated the bottom age of the ice core as 4009±150 a BP using the volcanic dating method and 4115±150 a BP using the H-L model method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 51239007 The work contained in this paper is part of a joint-research project between the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University and the Department of Shipping and Marine Technology at Chalmers University of Technology. The authors would like to thank Dr. Jonas Ringsberg at Chalmers University of Technology for his discussions and suggestions for this paper.
文摘To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu’ yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.
基金Rio Grande do Sul State Foundation for Research (FAPERGS), Brazil for financial support
文摘Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.
基金supported by National Natural Scientific Foundation of China (Grant Nos.40776002,40825017,41171052)the Hundred Talent Project of Chinese Academy of Sciences,the Polar Scientific Explore Organizing Committee Foundation (Grant Nos. 20080202,0852H71001)State Oceanic Administration of People’s Republic of China Project on Climate in Polar Regions (Grant Nos.CHINARE2012-04-04 and CHINARE2012- 02-02)
文摘A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the 21st Chinese National Antarctica Research Expedition (CHINARE) in January 2005. Two independent methods were used for dating the ice core, volcanic event markers shown by prominent non-sea-salt sulfate (nss-SO4^2-) and the Herron and Langway (H-L) firn densification model. Six promi- nent volcanic events (Agung 1963 AD, Tambora 1815 AD, Kuwae 1453 AD, Unknown 1259 AD, Taupo 186 AD and Pinatubo 1050 BC) were identified by comparison with other Antarctic ice cores. Based on the mean accumulation rates be- tween adjacent events, we estimate the age at the tim pore close-off depth (102 m) was 3516±100 a BP. This is the oldest close-off age ever reported from the Antarctic and the Greenland ice sheets. Calculations using the H-L model show that the age at the same depth is 3581±100 a BP. The two dating techniques differ by 65 years, or -1.8% of the record. We calculated the bottom age of the ice core as 4009±150 a BP using the volcanic dating method and 4115±150 a BP using the H-L model method.