Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs ...A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.展开更多
In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock ab...In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock absorber was presented. A novel concept, which describes the process of hydraulic shock absorber by dividing it into smaller steps, was proposed. The dynamic model and the differential equations were established. The results of numerical simulation agree well with data obtained from the vibrostand test, indicating that the collision between the piston and the oil, the alternation of static friction and sliding friction acted between the piston and the cylinder, and the adherence between valve plate and piston result in impact on the piston head near the top dead center and the bottom dead center. Ultimately, the impact excites the high-frequency vibration of the piston structure, which can generate the abnormal noise in the hydraulic shock absorber after its transfer. And the maximum vibration acceleration on the piston head and the abnormal noise increase with the increase of the gap between the oil and piston rod head, the maximum static friction force and the adhering function, respectively.展开更多
Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer...Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.展开更多
A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by e...A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by extending the range of scales. It is proved that using this method in small damping ratio and linear system, we can achieve better results in identification of the closely-spaced model.展开更多
To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide c...To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide continuously adjustable Coulomb friction and has many advantages for semi-active control. Numerical simulation of this isolation system is finished using Matlab simulink toolbox. General semi-active control algorithms are consided based on instantaneous optimal active control algorithm. And the results indicate that the shock isolation system can work efficiently, decreasing about 93% of the peak acceleration of the isolation floor.展开更多
Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mo...Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.展开更多
A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the...A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads.展开更多
A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calc...A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.展开更多
A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook da...A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook damper system is chosen as the reference model to be followed, and the control law is so determined that the asymptotically stable error dynamics occurs between the controlled state and the reference model state. Numerical simulations are carried out to study the performance of the new sliding mode controller. The results show that the proposed controller yields almost perfect tracking to the reference model and has a high robustness against model parameter uncertainties and disturbances.展开更多
An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis eff...An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.展开更多
The vibration of machines due to rotating parts unbalance disturbs the machine functioning and shortens the lifetime of its parts. A dynamic vibration absorber is a favorite solution to suppress the machine vibration ...The vibration of machines due to rotating parts unbalance disturbs the machine functioning and shortens the lifetime of its parts. A dynamic vibration absorber is a favorite solution to suppress the machine vibration since its implementation does not require any modification neither on the machine nor on its installation. The paper considers an unbalanced machine to which a lumped mass dynamic vibration absorber is attached. Firstly, the machine equipped with the absorber is modeled, and the vibration expressions are extracted. Secondly, an original approach to optimize the absorber parameters is presented, and simulation results are advanced, when the absorber is undamped and damped. Thirdly, the absorber optimal parameters allowing the best vibration reduction of the machine are identified, showing bow the absorber should be designed, when the disturbance frequency is stable or unstable. The results are a significant contribution in the vibration control of unbalanced machines.展开更多
Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibrat...Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.展开更多
A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure p...A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD.展开更多
The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Ot...The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Other peculiarities are connected with physical peculiarities of the device behaviour. To provide the analysis of structure hehaviour under the condition of the lack of input information, two types of design models of seismic protection devices were considered. They are the dampers linearization and the modelling of real dampers by dry friction ones. The dampers linearization makes it possible to use the existing software for calculating linear strongly-damped systems. To calculate structures with dry friction dampers, a new software was worked out. In this case, the structure is described as a piecewise-linear system of a relay-type. The investigations of the structure oscillations take into account both horizontal and vertical components of earthquake input. Under this condition, horizontal oscillation equations of structures are the MaRie-Hill ones. The input and structure parameters which caused the structure instability are estimated. To exclude the structure instability, high damping devices should be used. These methods were used for seismic resistant analysis of bridges with spherical bearings and hydraulic dampers applied in Sochi.展开更多
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
文摘A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.
基金Project(200244) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission, Chongqing University
文摘In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock absorber was presented. A novel concept, which describes the process of hydraulic shock absorber by dividing it into smaller steps, was proposed. The dynamic model and the differential equations were established. The results of numerical simulation agree well with data obtained from the vibrostand test, indicating that the collision between the piston and the oil, the alternation of static friction and sliding friction acted between the piston and the cylinder, and the adherence between valve plate and piston result in impact on the piston head near the top dead center and the bottom dead center. Ultimately, the impact excites the high-frequency vibration of the piston structure, which can generate the abnormal noise in the hydraulic shock absorber after its transfer. And the maximum vibration acceleration on the piston head and the abnormal noise increase with the increase of the gap between the oil and piston rod head, the maximum static friction force and the adhering function, respectively.
基金the Shanghai Administration of Education under Shanghai Key Disciplines Development Fund ProjectShanghai Automotive Technology Development Foundation under Contract NO.1 325 A
文摘Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.
文摘A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by extending the range of scales. It is proved that using this method in small damping ratio and linear system, we can achieve better results in identification of the closely-spaced model.
基金Supported by the National Civil Defense Office of China for the Tenth Five-Year Plan and Tsinghua Basic Research Foundation (No.JC2003001)
文摘To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide continuously adjustable Coulomb friction and has many advantages for semi-active control. Numerical simulation of this isolation system is finished using Matlab simulink toolbox. General semi-active control algorithms are consided based on instantaneous optimal active control algorithm. And the results indicate that the shock isolation system can work efficiently, decreasing about 93% of the peak acceleration of the isolation floor.
基金Supported by the Hong Kong Research Grant Council (No.CERG 621S05)
文摘Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.
基金Supported by National Natural Science Foundation of China (No.50638030,50525825)the National Science and Technology SupportProgram (No.2006BAJ13B02)
文摘A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads.
基金the National Natural Science Foundation of China (No: 51035030) and the Applied and Basic Research Foundation of Chongqing University
文摘A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.
基金the Nature Science Foundation of China (No: 51035030) and the Applied and Basic Research Foundation of Chongqing University.
文摘A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook damper system is chosen as the reference model to be followed, and the control law is so determined that the asymptotically stable error dynamics occurs between the controlled state and the reference model state. Numerical simulations are carried out to study the performance of the new sliding mode controller. The results show that the proposed controller yields almost perfect tracking to the reference model and has a high robustness against model parameter uncertainties and disturbances.
基金Supported by the National High Technology Research and Development Programme of China(No.2008AA11A143)
文摘An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.
文摘The vibration of machines due to rotating parts unbalance disturbs the machine functioning and shortens the lifetime of its parts. A dynamic vibration absorber is a favorite solution to suppress the machine vibration since its implementation does not require any modification neither on the machine nor on its installation. The paper considers an unbalanced machine to which a lumped mass dynamic vibration absorber is attached. Firstly, the machine equipped with the absorber is modeled, and the vibration expressions are extracted. Secondly, an original approach to optimize the absorber parameters is presented, and simulation results are advanced, when the absorber is undamped and damped. Thirdly, the absorber optimal parameters allowing the best vibration reduction of the machine are identified, showing bow the absorber should be designed, when the disturbance frequency is stable or unstable. The results are a significant contribution in the vibration control of unbalanced machines.
基金the National Nature Science Foundation under Grant No.50375121.
文摘Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.
文摘A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD.
文摘The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Other peculiarities are connected with physical peculiarities of the device behaviour. To provide the analysis of structure hehaviour under the condition of the lack of input information, two types of design models of seismic protection devices were considered. They are the dampers linearization and the modelling of real dampers by dry friction ones. The dampers linearization makes it possible to use the existing software for calculating linear strongly-damped systems. To calculate structures with dry friction dampers, a new software was worked out. In this case, the structure is described as a piecewise-linear system of a relay-type. The investigations of the structure oscillations take into account both horizontal and vertical components of earthquake input. Under this condition, horizontal oscillation equations of structures are the MaRie-Hill ones. The input and structure parameters which caused the structure instability are estimated. To exclude the structure instability, high damping devices should be used. These methods were used for seismic resistant analysis of bridges with spherical bearings and hydraulic dampers applied in Sochi.