In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1...In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it i...Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it is highly desired to develop a com- putational method to predict the subchloroplast locations of chloroplast proteins. In this study, we proposed a novel method to predict subchloroplast locations of proteins using tripeptide compositions. It first used the binomial distribution to optimize the feature sets. Then the support vector machine was selected to perform the prediction of subchloroplast locations of proteins. The proposed method was tested on a reliable and rigorous dataset including 259 chloroplast proteins with sequence identity ≤ 25%. In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem- brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The overall accuracy achieves 88.03% which is higher than that of other models. Based on this method, a predictor called ChloPred has been built and can be freely available from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide important information for theoretical and experimental research of chloroplast proteins.展开更多
文摘In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
文摘Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it is highly desired to develop a com- putational method to predict the subchloroplast locations of chloroplast proteins. In this study, we proposed a novel method to predict subchloroplast locations of proteins using tripeptide compositions. It first used the binomial distribution to optimize the feature sets. Then the support vector machine was selected to perform the prediction of subchloroplast locations of proteins. The proposed method was tested on a reliable and rigorous dataset including 259 chloroplast proteins with sequence identity ≤ 25%. In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem- brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The overall accuracy achieves 88.03% which is higher than that of other models. Based on this method, a predictor called ChloPred has been built and can be freely available from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide important information for theoretical and experimental research of chloroplast proteins.