This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechani...Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0-0.1 MPa), to the conjugate shear bands (0.5-2.0 MPa), and then to the single shear band (4-28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate.展开更多
Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient me...Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.展开更多
In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within th...In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model.This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea.The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time.When this warm current encounters the North Shandong-South Yellow Sea coastal current,there is a strong reverse shear action between the two current systems,forming a reverse-S-shaped shear front that begins near 34?N in the south and extends to approximately 38?N,with an overall length of over 600 km.The main driving force for the formation of this shear front derives from the circulation system with the reverse flow.In the shear zone,temperature and salinity gradients increase,flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side.The vertical circulation structure is complicated,consisting of a series of meso-and small-scale anti-clockwise eddies.Particularly,this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents,resulting in fine sediments deposition due to the weak hydrodynamic regime.展开更多
To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introdu...To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introduced in this paper. Both static and dynamic response equations as well as the corresponding natural boundary conditions of the box girder are deduced. Meanwhile, three generalized displacement functions: w (x) , U(x) and O(x) are employed and their differences in the calculus of variation are quantitatively investigated. The comparison of finite shell element results with analytical results of calculation examples validates the feasibility of the proposed approach.展开更多
In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different ...In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.展开更多
Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribut...Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.展开更多
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
基金Supported by the National Natural Science Foundation of China(50490275,50309004)
文摘Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0-0.1 MPa), to the conjugate shear bands (0.5-2.0 MPa), and then to the single shear band (4-28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(CX2011B093) supported by the Doctoral Candidate Research Innovation Program of Hunan Province, ChinaProject(20117Q008) supported by the Basic Scientific Research Funds for Central Universities of China
文摘Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.
基金supported by the National Natural Science Foundation of China (Nos.41030856,41406081,41476030)the Shandong Natural Science Fund (BS2012 HZ022)+1 种基金the Project of Taishan Scholarsthe Project of Ocean-Land interaction and coastal geological hazard (GZH201100203)
文摘In this paper,the authors explored the presence of shear fronts between the Yellow Sea Coastal Current(YSCC) and the monsoon-strengthened Yellow Sea Warm Current(YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model.This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea.The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time.When this warm current encounters the North Shandong-South Yellow Sea coastal current,there is a strong reverse shear action between the two current systems,forming a reverse-S-shaped shear front that begins near 34?N in the south and extends to approximately 38?N,with an overall length of over 600 km.The main driving force for the formation of this shear front derives from the circulation system with the reverse flow.In the shear zone,temperature and salinity gradients increase,flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side.The vertical circulation structure is complicated,consisting of a series of meso-and small-scale anti-clockwise eddies.Particularly,this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents,resulting in fine sediments deposition due to the weak hydrodynamic regime.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50578054)
文摘To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introduced in this paper. Both static and dynamic response equations as well as the corresponding natural boundary conditions of the box girder are deduced. Meanwhile, three generalized displacement functions: w (x) , U(x) and O(x) are employed and their differences in the calculus of variation are quantitatively investigated. The comparison of finite shell element results with analytical results of calculation examples validates the feasibility of the proposed approach.
基金ACKNOWLEDGMENTS This work was supported by the Natioal Natural Science Foundation of China (No.10672154) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20050358010). The Scholarship BRJH funding of Chinese Academy of Sciences is also appreciated.
文摘In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.
基金Project(50309004) supported by the National Natural Science Foundation of China
文摘Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.