[Objective] The aim was to study the relationship of plant characters with bud living rate and mother stem emergence rate of ratoon rice before harvest. [Method] Eighteen mid-season hybrid rice cultivators approved re...[Objective] The aim was to study the relationship of plant characters with bud living rate and mother stem emergence rate of ratoon rice before harvest. [Method] Eighteen mid-season hybrid rice cultivators approved recently were taken as materials and relationship of plant characters including bud living rate and moth- er stem emergence rate of ratoon rice before harvest was explored, based on relat- ed data. [Result] The shorter rice with lower harvesting index is the main character of high emergence rate for first cropping rice; decline of plant height and increase of ear-bearing percentage would improve emergence of regenerative seedlings. [Conclusion] The research provided scientific reference for breeding of rice cultivars with high regenerative capacity.展开更多
By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is i...By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.展开更多
Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) singl...Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) single crystals grown by an improved Bridgman method. The luminescent properties of the crystals were measured through photoluminescence excitation, emission spectra and decay curves. Luminescence between 960 and 1050 nm from yb3+: 2Fs/2--+2FT/2 transition, which was originated from the DC from Tm3+ ions to Yb3+ ions, was observed under the excitation of blue photon at 465 nm. Moreover, the energy transfer processes were studied based on the Inokuti-Hirayama model, and the results indicated that the energy transfer from Tm3+ to Yb3+ was an electric dipole-dipole interaction. The max- imum quantum cutting efficiency approached with 0.49mo1% Tm3+ and 5.99mo1% Yb3+. increasing the energy efficiency of crystalline energy part of the solar spectrum. up to 167.5% in LiYF4 single crystal codoped Application of this crystal has prospects for Si solar cells by photon doubling of the high展开更多
The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the ...The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the alpine meadow on the Tibetan Plateau is not very dear. A field experiment under controlled experimental warming and clipping conditions was conducted in an alpine meadow on the Northern Tibetan Plateau since July 2008. Open top chambers (0TCs) were used to simulate climate warming. The main objective of this study was to examine the responses of ecosystem respiration (Reco) and its temperature sensitivity to experimental warming and clipping at daily time scale. Therefore, we measured Reco once or twice a month from July to September in 2010, from June to September in 2011 and from August to September in 2012. Air temperature dominated daily variation of Reco whether or not experimental warming and clipping were present. Air temperature was exponentially correlated with Reco and it could significantly explain 58-96% variation of Redo at daily time scale. Experimental warming and clipping decreased daily mean Reco by 5.8-37.7% and -11.9-23.0%, respectively, although not all these changes were significant. Experimental warming tended to decrease the temperature sensitivity of Reco, whereas clipping tended to increase the temperature sensitivity of Reco at daily time scale. Our findings suggest that Reco wasmainly controlled by air temperature and may acclimate to climate warming due to its lower temperature sensitivity under experimental warming at daily time scale.展开更多
The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 ...The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.展开更多
An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of...An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.展开更多
In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate ...In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.展开更多
Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands whi...Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain. In this review, three main strategies, i.e., phytoexclusion, phytostabilization, and phytoextraction, are proposed to establish cropping systems for production of edible and non-edible plants, and for extraction of elements for industrial use. For safe production of food crops, the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance. Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agricultural measures. Phytoextracting trace elements (e.g., As, Cd, Ni, and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites, and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests. We conclude that appropriate combinations of soil types, plant species/cultivars, and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.展开更多
Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition ...Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition but drastically different morphologies and microstructures were synthesized. A composite of a hierarchical porous microstructure with primary and secondary particles(i.e., a "meatball-like" microstructure) achieved an excellent stable capacity of 126 m A h g^(-1) after 100 cycles. The rate capability of the composite could be dramatically enhanced by another round of high-energy ball milling and reannealing; subsequently, a composite that was made up of irregular rods was obtained, for which the capacity was improved by more than 230% to achieve ~53 m A h g^(-1) at a particularly high discharge rate of 50 C. This study demonstrated the feasibility of tailoring the electrochemical performance of electrode materials by simply changing their microstructures via facile ball milling and heat treatments, which can be particularly useful for optimizing composite electrodes for sodium-ion batteries.展开更多
Tillage practices can potentially affect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a doubl...Tillage practices can potentially affect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage (PT), and rotary tillage (RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density (BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass (ESM) basis and fixed depth (FD) basis. Soil carbon budget (SCB) under different tillage systems were assessed on the basis of emissions of methane (CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha-1, significantly higher than those under PT and RT (P 〈 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT 〉 PT 〉 RT, and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced effects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage effects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.展开更多
Pr3+and Yb3+co-doped phosphate glasses are prepared to study their optical properties.Excitation and emission spectra and decay curves are used to characterize their luminescence.We demonstrate that upon excitation of...Pr3+and Yb3+co-doped phosphate glasses are prepared to study their optical properties.Excitation and emission spectra and decay curves are used to characterize their luminescence.We demonstrate that upon excitation of Pr3+ion with one high energy photon at 470 nm,two near-infrared(NIR)photons are emitted at 950-1100 nm(Yb3+:2F 5/2 →2F 7/2)through an efficient cooperative energy transfer(CET)from Pr3+to Yb3+.The maximum energy transfer efficiency(ETE)and the corresponding quantum efficiency approach up to 90.17%and 190.17%,respectively.The glass materials might find potential application for improving the efficiency of silicon-based solar cells.展开更多
Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling peri...Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling periods) of alfalfa cultivation plots on a loess soil,initially containing illite and chlorite,in Lanzhou of northwestern China was selected to investigate the relationships among alfalfa cropping,soil potassium (K) content and soil clay minerals.The results indicated that soil K significantly accumulated after cropping,with a peak value at about 15 years,and decreased afterwards.The accumulated K was associated with the K increase in the well-crystallized illite,which was not extracted by the traditional laboratory K extraction methods in assessing bioavailability.The steep decline in soil K content after 15-year cropping was in accord with the observed fertility loss in the alfalfa soil.Plant biomass productivity peaked at near 9 years of culture,whereas soil K and clay minerals continued to increase until cropping for 15 years.This suggested that K increased in the topsoil came from the deep root zone.Thus alfalfa continued to store K in clays even after peak production occurred.Nitrogen did not follow these trends,showing a general decline compared with the native prairie soils that had not been cropped.Therefore,the traditional alfalfa cropping can increase K content in the topsoil.展开更多
In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) a...In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes' rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in solving ray-triangular Bezier patch intersection problems.展开更多
Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practice...Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practices, and fertilizer placement methods on greenhouse gas (CO2, CH4, and N2O) emissions. A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study. The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama, USA, on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults). Measurements of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20) emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network) protocols to assess the effects of different tillage (conventional vs. no-tillage) and fertilizer placement (subsurface banding vs. surface application) practices in a corn (Zea mays L.) cropping system. Fertilizer sources were urea-ammonium nitrate (UAN), ammonium nitrate (AN) and poultry litter (M) applied at a rate of 170 kg ha^(-1) of available N. Banding of fertilizer resulted in the greatest concentration of gaseous loss (CO2 and N2O) compared to surface applications of fertilizer. Fertilizer banding increased CO2 and N2O loss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding. Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day. Throughout the course of this study, CH4 flux was not affected by tillage, fertilizer source, or fertilizer placement method. These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.展开更多
基金Supported by Sichuan Financial and Engineering Foundation for the Young(2007QNJJ-020)Sichuan Cultivation Foundation for Academy leaders+3 种基金Sichuan Key Project of Rice BreedingConstruction of Rice Industry System in SouthwestNational Crop-harvesting ProjectSichuan Financial Promotion~~
文摘[Objective] The aim was to study the relationship of plant characters with bud living rate and mother stem emergence rate of ratoon rice before harvest. [Method] Eighteen mid-season hybrid rice cultivators approved recently were taken as materials and relationship of plant characters including bud living rate and moth- er stem emergence rate of ratoon rice before harvest was explored, based on relat- ed data. [Result] The shorter rice with lower harvesting index is the main character of high emergence rate for first cropping rice; decline of plant height and increase of ear-bearing percentage would improve emergence of regenerative seedlings. [Conclusion] The research provided scientific reference for breeding of rice cultivars with high regenerative capacity.
文摘By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.
文摘Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) single crystals grown by an improved Bridgman method. The luminescent properties of the crystals were measured through photoluminescence excitation, emission spectra and decay curves. Luminescence between 960 and 1050 nm from yb3+: 2Fs/2--+2FT/2 transition, which was originated from the DC from Tm3+ ions to Yb3+ ions, was observed under the excitation of blue photon at 465 nm. Moreover, the energy transfer processes were studied based on the Inokuti-Hirayama model, and the results indicated that the energy transfer from Tm3+ to Yb3+ was an electric dipole-dipole interaction. The max- imum quantum cutting efficiency approached with 0.49mo1% Tm3+ and 5.99mo1% Yb3+. increasing the energy efficiency of crystalline energy part of the solar spectrum. up to 167.5% in LiYF4 single crystal codoped Application of this crystal has prospects for Si solar cells by photon doubling of the high
文摘针对多介质可压缩流体动力学问题,提出了一种单元中心型二维MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法。在拉氏步,流体力学方程组采用中心型间断有限元方法求解。对于混合网格,采用Tipton压力松弛模型更新物理量,用等参坐标法更新物质中心点坐标。界面重构采用一种健壮的MOF(Moment of Fluid)方法。在重映步提出了基于多边形相交的二阶积分守恒重映方法。该方法分为四个部分:多项式重构、多边形相交、积分和后验校正。多边形相交使用"剪裁投影"算法,显著降低了多边形相交算法的复杂度。后验校正是基于MOOD (Multi-dimensional Optimal Order Detection)限制策略,并做了一些改动以适应多介质的计算。数值算例表明,该方法具有二阶的精度和较好的鲁棒性。
基金funded by the National Natural Science Foundation of China (Grant Nos. 41171084and 40771121)Innovation Project of the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences (Grant No.2012ZD005)+2 种基金the Natural Science Foundation of the Tibet Autonomous Region (Name. the Response Experiment of the Alpine Meadow Vegetation to Climate Warming)the National Basic Research Program of China (Grant No.2010CB951704)the National Science and Technology Plan Project of China (Grant No.2011BAC09B03)
文摘The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the alpine meadow on the Tibetan Plateau is not very dear. A field experiment under controlled experimental warming and clipping conditions was conducted in an alpine meadow on the Northern Tibetan Plateau since July 2008. Open top chambers (0TCs) were used to simulate climate warming. The main objective of this study was to examine the responses of ecosystem respiration (Reco) and its temperature sensitivity to experimental warming and clipping at daily time scale. Therefore, we measured Reco once or twice a month from July to September in 2010, from June to September in 2011 and from August to September in 2012. Air temperature dominated daily variation of Reco whether or not experimental warming and clipping were present. Air temperature was exponentially correlated with Reco and it could significantly explain 58-96% variation of Redo at daily time scale. Experimental warming and clipping decreased daily mean Reco by 5.8-37.7% and -11.9-23.0%, respectively, although not all these changes were significant. Experimental warming tended to decrease the temperature sensitivity of Reco, whereas clipping tended to increase the temperature sensitivity of Reco at daily time scale. Our findings suggest that Reco wasmainly controlled by air temperature and may acclimate to climate warming due to its lower temperature sensitivity under experimental warming at daily time scale.
基金The authors are grateful for the financial supports from Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology of China(JSJMYWX2020-01)Zhejiang Provincial Natural Science Foundation of China(LY18E050005)the Startup Foundation for Introducing Talent of Nanjing Institute of Industry Technology(YK18-13-02)of China.
文摘The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.
文摘An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.
文摘In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.
基金Supported by the Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China and the Chinese Scholarship Council
文摘Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain. In this review, three main strategies, i.e., phytoexclusion, phytostabilization, and phytoextraction, are proposed to establish cropping systems for production of edible and non-edible plants, and for extraction of elements for industrial use. For safe production of food crops, the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance. Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agricultural measures. Phytoextracting trace elements (e.g., As, Cd, Ni, and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites, and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests. We conclude that appropriate combinations of soil types, plant species/cultivars, and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.
基金supported by the U.S.NSF(Grant No.DMR-1320615)subsequently an NSSEFF fellowship(Grant No.N00014-15-1-0030)
文摘Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition but drastically different morphologies and microstructures were synthesized. A composite of a hierarchical porous microstructure with primary and secondary particles(i.e., a "meatball-like" microstructure) achieved an excellent stable capacity of 126 m A h g^(-1) after 100 cycles. The rate capability of the composite could be dramatically enhanced by another round of high-energy ball milling and reannealing; subsequently, a composite that was made up of irregular rods was obtained, for which the capacity was improved by more than 230% to achieve ~53 m A h g^(-1) at a particularly high discharge rate of 50 C. This study demonstrated the feasibility of tailoring the electrochemical performance of electrode materials by simply changing their microstructures via facile ball milling and heat treatments, which can be particularly useful for optimizing composite electrodes for sodium-ion batteries.
基金Supported by the Special Fund for Agro-Scientific Research in the Public Interest of China(Nos.200903003 and 201103001)
文摘Tillage practices can potentially affect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage (PT), and rotary tillage (RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density (BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass (ESM) basis and fixed depth (FD) basis. Soil carbon budget (SCB) under different tillage systems were assessed on the basis of emissions of methane (CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha-1, significantly higher than those under PT and RT (P 〈 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT 〉 PT 〉 RT, and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced effects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage effects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.
基金supported by the National Natural Science Foundation of China(Nos.61275180,51272109and50972061)the Natural Science Foundation of Zhejiang Province(Nos.Z4110072and R4100364)+1 种基金the Opening Foundation of Zhejiang Provincial Top Key DisciplineK.C.Wong Magna Fund in Ningbo University
文摘Pr3+and Yb3+co-doped phosphate glasses are prepared to study their optical properties.Excitation and emission spectra and decay curves are used to characterize their luminescence.We demonstrate that upon excitation of Pr3+ion with one high energy photon at 470 nm,two near-infrared(NIR)photons are emitted at 950-1100 nm(Yb3+:2F 5/2 →2F 7/2)through an efficient cooperative energy transfer(CET)from Pr3+to Yb3+.The maximum energy transfer efficiency(ETE)and the corresponding quantum efficiency approach up to 90.17%and 190.17%,respectively.The glass materials might find potential application for improving the efficiency of silicon-based solar cells.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2007CB407206)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-409)the National Natural Science Foundation of China (No. 40771091)
文摘Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling periods) of alfalfa cultivation plots on a loess soil,initially containing illite and chlorite,in Lanzhou of northwestern China was selected to investigate the relationships among alfalfa cropping,soil potassium (K) content and soil clay minerals.The results indicated that soil K significantly accumulated after cropping,with a peak value at about 15 years,and decreased afterwards.The accumulated K was associated with the K increase in the well-crystallized illite,which was not extracted by the traditional laboratory K extraction methods in assessing bioavailability.The steep decline in soil K content after 15-year cropping was in accord with the observed fertility loss in the alfalfa soil.Plant biomass productivity peaked at near 9 years of culture,whereas soil K and clay minerals continued to increase until cropping for 15 years.This suggested that K increased in the topsoil came from the deep root zone.Thus alfalfa continued to store K in clays even after peak production occurred.Nitrogen did not follow these trends,showing a general decline compared with the native prairie soils that had not been cropped.Therefore,the traditional alfalfa cropping can increase K content in the topsoil.
基金Project supported by the National Natural Science Foundation of China (Nos. 61100105, 61572020, and 61472332), the Natural Science Foundation of Fujian Province of China (No. 2015J01273), and the Fundamental Research Funds for the Central Universities, China (Nos. 20720150002 and 20720140520)
文摘In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes' rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in solving ray-triangular Bezier patch intersection problems.
基金Supported by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) fundsthe Alabama Wheat and Feed Grains Commodity Grant, USA
文摘Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practices, and fertilizer placement methods on greenhouse gas (CO2, CH4, and N2O) emissions. A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study. The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama, USA, on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults). Measurements of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20) emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network) protocols to assess the effects of different tillage (conventional vs. no-tillage) and fertilizer placement (subsurface banding vs. surface application) practices in a corn (Zea mays L.) cropping system. Fertilizer sources were urea-ammonium nitrate (UAN), ammonium nitrate (AN) and poultry litter (M) applied at a rate of 170 kg ha^(-1) of available N. Banding of fertilizer resulted in the greatest concentration of gaseous loss (CO2 and N2O) compared to surface applications of fertilizer. Fertilizer banding increased CO2 and N2O loss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding. Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day. Throughout the course of this study, CH4 flux was not affected by tillage, fertilizer source, or fertilizer placement method. These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.