By using LPCVD SiO 2 and poly silicon as sacrificial layer and cantilever respectively,a poly silicon micromachined RF MEMS(radio frequency microelectronic mechanical system) switch is fabricated.During the fabrica...By using LPCVD SiO 2 and poly silicon as sacrificial layer and cantilever respectively,a poly silicon micromachined RF MEMS(radio frequency microelectronic mechanical system) switch is fabricated.During the fabrication process,the stress of poly silicon is released to prevent poly silicon membrane from bending,and the issue of compatibility between RF switch and IC process technology is also resolved.The low residual tensile stress poly silicon cantilever is obtained by the optimization.The switch is tested,and the preliminary test results show:the pull down voltage is 89V,and the switch speed is about 5μs.The switch provides the potential to build a new fully monolithic integrated RF MEMS for radar and communications applications.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of ...This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.展开更多
In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functiona...In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.展开更多
Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists...Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.展开更多
Since the 1960 s, mining science and technology in China has experienced two technical innovations, i.e.the ‘‘Masonry Beam Theory(MBT)" and ‘‘Transfer Rock Beam Theory(TRBT)". Based on those theories, th...Since the 1960 s, mining science and technology in China has experienced two technical innovations, i.e.the ‘‘Masonry Beam Theory(MBT)" and ‘‘Transfer Rock Beam Theory(TRBT)". Based on those theories, the conventional mining method(being called the 121 mining method) was established, consisting of excavating two tunnels with a pillar left for mining a working panel. However, with increasing mining depth,engineering geological disasters in the underground caverns have been frequently encountered. In addition, the use of the coal-pillar mining results in a large amount of coal resources unexploited. In order to address the problems above, the ‘‘Roof Cut Short-Arm Beam Theory(RCSBT), being called the 110 mining method)" was proposed by He Manchao in 2008. The 110 mining method features the mining of one coal seam panel, excavating necessarily only one roadway tunnel and leaving no pillars. Realization of the 110 mining method includes the following steps:(1) directional pre-splitting roof cutting,(2) supporting the roof by using high Constant Resistance Large Deformation bolt/cable(CRLD), and(3) blocking gangue by hydraulic props. This paper presents an overview of the principles, techniques and application of the 110 mining method. Special emphasis is placed on the numerical simulation of the geostress distribution found in the mining panel using the 110 method compared to that of the 121 method. In addition, the stress distribution on the ‘‘short beam" left by the roof cutting when performing the 110 method was also investigated using both numerical simulation and theoretical formulation.展开更多
A new method to reconstruct a comparatively complete muscle model of the human lower limb from CT and MRI data is presented. Topological structure of more than fourteen muscles is built and coordinates of origin and i...A new method to reconstruct a comparatively complete muscle model of the human lower limb from CT and MRI data is presented. Topological structure of more than fourteen muscles is built and coordinates of origin and insertion points are given. Based on this model, straight-line model and centroid-line muscle model are acquired. Muscle force prediction is discussed according to the model reconstructed, and a multi-objective optimization method is put forward for evaluating muscle forces of the human lower extremity.展开更多
This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody sys...This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody system and is studied as such. Dynamic analyses of constrained multibody systems may be obtained using recently developed procedures based upon Kane′s equations and Huston′s methods. These procedures lead to a numerical formulation of the governing equations, thus producing a simulation of the movement of the system. The procedures are applied and illustrated with a two robot system using PUMA 760 and 562 robots. A good agreement is obtained between theoretical and experimental results.展开更多
The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-shea...The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.展开更多
The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical re...The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up's drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state ...The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible. Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and...Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.展开更多
In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability w...In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To impleme...A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To implement intelligent and interactive rehabilitation exercises, motion intention of patients' up- per limb is introduced into control methods of rehabilitation exercises. In passive motions, according to the character of unilateral impaired, multi-channels surface electromyogram (sEMG) signals of patients' healthy arm muscles are acquired and analyzed to recognize the upper limb motions, then drive the robot and assist paralysis ann's rehabilitation exercises. In active-resistant motions, because patients are re- covered with some muscle forces and active motion ability after a rehabilitation period, the terminal force loaded on the robot by an impaired arm are estimated with multi-channel joint torque sensors, according to which, the terminal velocity of the robot is controlled to drive the joint motions with a damp controller.展开更多
We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the imp...We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the improvement of the cared person's movement volition and movement abilities. In order to realize safe and human friendly robot care tasks, full body manipulation is an important technology, for which it is necessary to estimate the subject's center of gravity from the contact positions and forces with the robot's two arms. In this paper, we estimate the center of gravity of object based on the contact point and the contact force estimated by force sensor on both robot arms. The position of gravity center is important to realize care tasks stably. We performed experiments and simulations for the single point contact and dual points contact cases using a cylindrical object. As a result, it is found that although some errors were recognized in the experiments compared with the simulations, the relations between the contact positions and such errors were observed. Such experimental error mainly comes from the difference of shape between the real robot and the model of the robot in simulation.展开更多
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with...To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.展开更多
文摘By using LPCVD SiO 2 and poly silicon as sacrificial layer and cantilever respectively,a poly silicon micromachined RF MEMS(radio frequency microelectronic mechanical system) switch is fabricated.During the fabrication process,the stress of poly silicon is released to prevent poly silicon membrane from bending,and the issue of compatibility between RF switch and IC process technology is also resolved.The low residual tensile stress poly silicon cantilever is obtained by the optimization.The switch is tested,and the preliminary test results show:the pull down voltage is 89V,and the switch speed is about 5μs.The switch provides the potential to build a new fully monolithic integrated RF MEMS for radar and communications applications.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
文摘This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.
基金Project (Nos. 10432030 and 10472102) supported by the NationalNatural Science Foundation of China
文摘In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.
文摘Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.
文摘Since the 1960 s, mining science and technology in China has experienced two technical innovations, i.e.the ‘‘Masonry Beam Theory(MBT)" and ‘‘Transfer Rock Beam Theory(TRBT)". Based on those theories, the conventional mining method(being called the 121 mining method) was established, consisting of excavating two tunnels with a pillar left for mining a working panel. However, with increasing mining depth,engineering geological disasters in the underground caverns have been frequently encountered. In addition, the use of the coal-pillar mining results in a large amount of coal resources unexploited. In order to address the problems above, the ‘‘Roof Cut Short-Arm Beam Theory(RCSBT), being called the 110 mining method)" was proposed by He Manchao in 2008. The 110 mining method features the mining of one coal seam panel, excavating necessarily only one roadway tunnel and leaving no pillars. Realization of the 110 mining method includes the following steps:(1) directional pre-splitting roof cutting,(2) supporting the roof by using high Constant Resistance Large Deformation bolt/cable(CRLD), and(3) blocking gangue by hydraulic props. This paper presents an overview of the principles, techniques and application of the 110 mining method. Special emphasis is placed on the numerical simulation of the geostress distribution found in the mining panel using the 110 method compared to that of the 121 method. In addition, the stress distribution on the ‘‘short beam" left by the roof cutting when performing the 110 method was also investigated using both numerical simulation and theoretical formulation.
文摘A new method to reconstruct a comparatively complete muscle model of the human lower limb from CT and MRI data is presented. Topological structure of more than fourteen muscles is built and coordinates of origin and insertion points are given. Based on this model, straight-line model and centroid-line muscle model are acquired. Muscle force prediction is discussed according to the model reconstructed, and a multi-objective optimization method is put forward for evaluating muscle forces of the human lower extremity.
文摘This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody system and is studied as such. Dynamic analyses of constrained multibody systems may be obtained using recently developed procedures based upon Kane′s equations and Huston′s methods. These procedures lead to a numerical formulation of the governing equations, thus producing a simulation of the movement of the system. The procedures are applied and illustrated with a two robot system using PUMA 760 and 562 robots. A good agreement is obtained between theoretical and experimental results.
基金Project(2006AA04Z228) supported by National Hi-tech Research and Development Program of China
文摘The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.
文摘The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up's drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474118 and 10274093 and the National Fundamental Research Program of China under Grant No. 2005CB724502
文摘The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible. Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
文摘Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.
基金Project supported by China Postdoctoral Science Foundation (No.2002031245) and the Natural Science Foundation of Zhejiang Prov-ince (No. 502118) China
文摘In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
基金supported by the High Technology Research and Development Programme of China(No.2004AA421030)
文摘A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are ana- lyzed. To implement intelligent and interactive rehabilitation exercises, motion intention of patients' up- per limb is introduced into control methods of rehabilitation exercises. In passive motions, according to the character of unilateral impaired, multi-channels surface electromyogram (sEMG) signals of patients' healthy arm muscles are acquired and analyzed to recognize the upper limb motions, then drive the robot and assist paralysis ann's rehabilitation exercises. In active-resistant motions, because patients are re- covered with some muscle forces and active motion ability after a rehabilitation period, the terminal force loaded on the robot by an impaired arm are estimated with multi-channel joint torque sensors, according to which, the terminal velocity of the robot is controlled to drive the joint motions with a damp controller.
文摘We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the improvement of the cared person's movement volition and movement abilities. In order to realize safe and human friendly robot care tasks, full body manipulation is an important technology, for which it is necessary to estimate the subject's center of gravity from the contact positions and forces with the robot's two arms. In this paper, we estimate the center of gravity of object based on the contact point and the contact force estimated by force sensor on both robot arms. The position of gravity center is important to realize care tasks stably. We performed experiments and simulations for the single point contact and dual points contact cases using a cylindrical object. As a result, it is found that although some errors were recognized in the experiments compared with the simulations, the relations between the contact positions and such errors were observed. Such experimental error mainly comes from the difference of shape between the real robot and the model of the robot in simulation.
基金Project(2015-29)supported by Jiangsu Distinguished Professor,ChinaProject(BRA2015311)supported by the Jiangsu Province Fourth 333 Engineering,China
文摘To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.