The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo sim...This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.展开更多
Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnorma...Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral pos...Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.展开更多
Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks obs...Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.展开更多
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular...As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
In this manuscript,the neat epoxy(EP)and functionalized Fe_(3)O_(4)(G-Fe_(3)O_(4))reinforced epoxy(G-Fe_(3)O_(4)/EP)coatings were cured under different temperatures,and the effect of the low curing temperature on the ...In this manuscript,the neat epoxy(EP)and functionalized Fe_(3)O_(4)(G-Fe_(3)O_(4))reinforced epoxy(G-Fe_(3)O_(4)/EP)coatings were cured under different temperatures,and the effect of the low curing temperature on the anticorrosion performance was investigated.The experimental results show that the epoxy-amine ring-open addition reaction mainly exists in the curing process,and the activation energies of the reaction for the two coatings are 55.84 and 53.29 kJ/mol,respectively.For the coatings cured at the low temperature,almost no pores could be detected on the fracture surface,but the presentence of the rough regions reflects the poor curing state.As compared with the samples cured at the high temperature,the anticorrosion performance of the coatings with the low curing temperature is worse,and the decrease rate of the anticorrosion performance is slower,because of the poor curing state and low adhesion obtained at the low temperature.展开更多
The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by charac...The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.展开更多
Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The in...Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The investigation utilizes a molecular dynamics(MD)approach at the atomic level and vibrational dynamics calculations using the GolDNA-Amber force field.Results The results reveal that the sugar-phosphate backbone of the DNA exhibits reduced adherence to the gold surface,while the side chains display a stronger affinity.When subjecting the hydrated DNA strands to an electric field with frequencies up to 10 THz,peak intensities of vibrational dynamic density(VDoS)are observed at five different frequencies.Moreover,the strong electric field causes hydrogen bonds in the DNA within the slit to break.The sensitivity to the electric field is particularly pronounced at 8.8 THz and 9.6 THz,with different vibrational modes observed at varying electric field strengths.Conclusion These findings contribute to an enhanced understanding of the molecular organization of gold-plated charged biological interfaces.展开更多
To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game mod...To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.展开更多
Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate ...Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5℃,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.展开更多
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,...The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.展开更多
Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and conta...Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and contact probe can combine the complementary characteristics of different sensors,and has been widely concerned in industry and academia.The number and distribution of measurement points will significantly affect the efficiency of multisensor fusion and the accuracy of surface reconstruction.An aggregation‑value‑based active sampling method for multisensor freeform surface measurement and reconstruction is proposed.Based on game theory iteration,probe measurement points are generated actively,and the importance of each measurement point on freeform surface to multi-sensor fusion is clearly defined as Shapley value of the measurement point.Thus,the problem of obtaining the optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set.Simulation and real measurement results verify that the proposed method can significantly reduce the required probe sample size while ensuring the measurement accuracy of multi-sensor fusion.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金supported by grants from the National Natural Science Foundation of China(Nos.52031017,51801237)the National Key Laboratory of Science and Technology on High-strength Structural Materials in Central South University,China(No.6142912200106).
文摘This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.
基金supported by the Open Research Fund of Songshan Lake Materials Laboratory,China (No.2022SLABFN14)Guangdong Basic and Applied Basic Research Foundation,China (No.2021A1515110108)the National Natural Science Foundation of China (No.52371168)。
文摘Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.
文摘Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.
文摘Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(22325304,22221003 and 22033007)We acknowledge the Supercomputing Center of USTC,Hefei Advanced Computing Center,Beijing PARATERA Tech Co.,Ltd.,for providing high-performance computing services。
文摘As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金Project(U2106216)supported by the National Natural Science Foundation of China。
文摘In this manuscript,the neat epoxy(EP)and functionalized Fe_(3)O_(4)(G-Fe_(3)O_(4))reinforced epoxy(G-Fe_(3)O_(4)/EP)coatings were cured under different temperatures,and the effect of the low curing temperature on the anticorrosion performance was investigated.The experimental results show that the epoxy-amine ring-open addition reaction mainly exists in the curing process,and the activation energies of the reaction for the two coatings are 55.84 and 53.29 kJ/mol,respectively.For the coatings cured at the low temperature,almost no pores could be detected on the fracture surface,but the presentence of the rough regions reflects the poor curing state.As compared with the samples cured at the high temperature,the anticorrosion performance of the coatings with the low curing temperature is worse,and the decrease rate of the anticorrosion performance is slower,because of the poor curing state and low adhesion obtained at the low temperature.
基金financially supported by the National Science and Technology Major Project of China (Nos.MJ-2018-G-48,J2019-Ⅵ-0023-0140)the Research Fund of the State Key Laboratory of Solidification Processing (NPU),China (No.2022-TS-04)。
文摘The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.
文摘Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The investigation utilizes a molecular dynamics(MD)approach at the atomic level and vibrational dynamics calculations using the GolDNA-Amber force field.Results The results reveal that the sugar-phosphate backbone of the DNA exhibits reduced adherence to the gold surface,while the side chains display a stronger affinity.When subjecting the hydrated DNA strands to an electric field with frequencies up to 10 THz,peak intensities of vibrational dynamic density(VDoS)are observed at five different frequencies.Moreover,the strong electric field causes hydrogen bonds in the DNA within the slit to break.The sensitivity to the electric field is particularly pronounced at 8.8 THz and 9.6 THz,with different vibrational modes observed at varying electric field strengths.Conclusion These findings contribute to an enhanced understanding of the molecular organization of gold-plated charged biological interfaces.
基金supported by the National Natural Science Foundation of China(71973001).
文摘To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.
基金This work was supported by the National Natural Science Foundation of China(No.22073090 No.21991132,No.52021002)the National Key R&D Program of China(No.2020YFA0710703)the Funds of Youth Innovation Promotion Association and the Fun damental Research Funds for the Central Universities.
文摘Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5℃,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.
基金financially supported by State Grid Corporation of China (No.5500-202128250A-0-0-00)。
文摘The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.
基金supported by the Na‑tional Key R&D Program of China(No.2022YFB3402600)the National Science Fund for Distinguished Young Scholars(No.51925505)+1 种基金the General Program of National Natural Science Foundation of China(No.52275491)Joint Funds of the National Natural Science Foundation of China(No.U21B2081).
文摘Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and contact probe can combine the complementary characteristics of different sensors,and has been widely concerned in industry and academia.The number and distribution of measurement points will significantly affect the efficiency of multisensor fusion and the accuracy of surface reconstruction.An aggregation‑value‑based active sampling method for multisensor freeform surface measurement and reconstruction is proposed.Based on game theory iteration,probe measurement points are generated actively,and the importance of each measurement point on freeform surface to multi-sensor fusion is clearly defined as Shapley value of the measurement point.Thus,the problem of obtaining the optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set.Simulation and real measurement results verify that the proposed method can significantly reduce the required probe sample size while ensuring the measurement accuracy of multi-sensor fusion.