This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ...A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.展开更多
Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowe...Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.展开更多
To improve the operation and maintenance management level of large repairable components,such as electrical equipment,large nuclear power facilities,and high-speed electric multiple unit(EMU),and increase economic ben...To improve the operation and maintenance management level of large repairable components,such as electrical equipment,large nuclear power facilities,and high-speed electric multiple unit(EMU),and increase economic benefits,preventive maintenance has been widely used in industrial enterprises in recent years.Focusing on the problems of high maintenance costs and considerable failure hazards of EMU components in operation,we establish a state preventive maintenance model based on a stochastic differential equation.Firstly,a state degradation model of the repairable components is established in consideration of the degradation of the components and external random interference.Secondly,based on topology and martingale theory,the state degradation model is analyzed,and its simplex,stopping time,and martingale properties are proven.Finally,the monitoring data of the EMU components are taken as an example,analyzed and simulated to verify the effectiveness of the model.展开更多
Similar to conventional automobiles,same safety problems exist in electric vehicles.In the meantime,since its structural and power features are different,electric vehicles have their particular safety problems.Both do...Similar to conventional automobiles,same safety problems exist in electric vehicles.In the meantime,since its structural and power features are different,electric vehicles have their particular safety problems.Both domestic and international organizations have released some safety standards for electric vehicles which have also been added and complemented along with the development and research of electric vehicles.展开更多
Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),thi...Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.展开更多
Currently new suburban trains for the operating company Norwegian State Railways are being delivered. The innovative EMU Class BM72 four-unit electric train sets should replace the existing operational EMU Class BM69 ...Currently new suburban trains for the operating company Norwegian State Railways are being delivered. The innovative EMU Class BM72 four-unit electric train sets should replace the existing operational EMU Class BM69 three-unit electric train sets which have been in service for more than almost 40 years. Hence, a renewal of the suburban train fleet seemed to be necessary. Due to the design, the new four-unit electric train sets have unusually high axle loads being used as suburban train for passenger traffic. As an average, the EMU Class BM72 train sets have axle loads which are approximately 22-25 percent higher than axle loads of the existing EMU train sets of class BM69. Hence, this paper will discuss the consequences concerning rail stresses and track deterioration tendencies with respect to a total replacement of the BM69 sets to the BM72 sets. Approved hand tool calculation methods found in the literature will be applied in order to calculate the stresses. Further will works completed by the ORE- committee D 161 be applied regarding considerations with respect to track damages. In this case, relative comparisons between EMU Class BM72 and EMU Class BM69 will be carried out.展开更多
ON the meter gauge railway of Kuala Lumpur,capital of Malaysia,an electric multiple unit(EMU)runs at a speed of 160 km per hour.Compared with the speed of over 300 km per hour of high-speed trains,many would argue t...ON the meter gauge railway of Kuala Lumpur,capital of Malaysia,an electric multiple unit(EMU)runs at a speed of 160 km per hour.Compared with the speed of over 300 km per hour of high-speed trains,many would argue that this is not fast.展开更多
Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular a...Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular ad hoc network (VANET). Firstly, the relationship among anonymity degree, expected company area and vehicle density is discussed. Then, a companion set F is set up by k neighbor vehicles. Based on secure multi-party computation, each vehicle in V can compute the centroid, not revealing its location to each other. The centroid as a cloaking location is sent to LBS provider (P) and P returns a point of interest (POI). Due to a distributed secret sharing structure, P cannot obtain the positions of non-complicity vehicles by colluding with multiple internal vehicles. To detect fake data from dishonest vehicles, zero knowledge proof is adopted. Comparing with other related methods, our solution can resist passive and active attacks from internal and external nodes. It provides strong privacy protection for LBS in VANET.展开更多
A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction...A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.展开更多
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ...For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.展开更多
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金Projects(90820302,60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education of China+1 种基金Projects(2009FJ4030) supported by Academician Foundation of Hunan Province,ChinaProject supported by the Freedom Explore Program of Central South University,China
文摘A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.
文摘Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.
基金National Natural Science Foundation of China(No.61867003)Youth Science Fund Program of Lanzhou Jiaotong University(No.2019031)。
文摘To improve the operation and maintenance management level of large repairable components,such as electrical equipment,large nuclear power facilities,and high-speed electric multiple unit(EMU),and increase economic benefits,preventive maintenance has been widely used in industrial enterprises in recent years.Focusing on the problems of high maintenance costs and considerable failure hazards of EMU components in operation,we establish a state preventive maintenance model based on a stochastic differential equation.Firstly,a state degradation model of the repairable components is established in consideration of the degradation of the components and external random interference.Secondly,based on topology and martingale theory,the state degradation model is analyzed,and its simplex,stopping time,and martingale properties are proven.Finally,the monitoring data of the EMU components are taken as an example,analyzed and simulated to verify the effectiveness of the model.
文摘Similar to conventional automobiles,same safety problems exist in electric vehicles.In the meantime,since its structural and power features are different,electric vehicles have their particular safety problems.Both domestic and international organizations have released some safety standards for electric vehicles which have also been added and complemented along with the development and research of electric vehicles.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181)。
文摘Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.
文摘Currently new suburban trains for the operating company Norwegian State Railways are being delivered. The innovative EMU Class BM72 four-unit electric train sets should replace the existing operational EMU Class BM69 three-unit electric train sets which have been in service for more than almost 40 years. Hence, a renewal of the suburban train fleet seemed to be necessary. Due to the design, the new four-unit electric train sets have unusually high axle loads being used as suburban train for passenger traffic. As an average, the EMU Class BM72 train sets have axle loads which are approximately 22-25 percent higher than axle loads of the existing EMU train sets of class BM69. Hence, this paper will discuss the consequences concerning rail stresses and track deterioration tendencies with respect to a total replacement of the BM69 sets to the BM72 sets. Approved hand tool calculation methods found in the literature will be applied in order to calculate the stresses. Further will works completed by the ORE- committee D 161 be applied regarding considerations with respect to track damages. In this case, relative comparisons between EMU Class BM72 and EMU Class BM69 will be carried out.
文摘ON the meter gauge railway of Kuala Lumpur,capital of Malaysia,an electric multiple unit(EMU)runs at a speed of 160 km per hour.Compared with the speed of over 300 km per hour of high-speed trains,many would argue that this is not fast.
基金the National Natural Science Foundation of China,by the Natural Science Foundation of Anhui Province,by the Specialized Research Fund for the Doctoral Program of Higher Education of China,the Fundamental Research Funds for the Central Universities
文摘Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular ad hoc network (VANET). Firstly, the relationship among anonymity degree, expected company area and vehicle density is discussed. Then, a companion set F is set up by k neighbor vehicles. Based on secure multi-party computation, each vehicle in V can compute the centroid, not revealing its location to each other. The centroid as a cloaking location is sent to LBS provider (P) and P returns a point of interest (POI). Due to a distributed secret sharing structure, P cannot obtain the positions of non-complicity vehicles by colluding with multiple internal vehicles. To detect fake data from dishonest vehicles, zero knowledge proof is adopted. Comparing with other related methods, our solution can resist passive and active attacks from internal and external nodes. It provides strong privacy protection for LBS in VANET.
基金Projects(51605315,51478399)supported by the National Natural Science Foundation of ChinaProject(2013BAG20B00)supported by the National Key Technology R&D Program of ChinaProject(TPL1707)supported by the Open Project Program of the State Key Laboratory of Traction Power,China
文摘A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.
文摘For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.