[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental...[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.展开更多
This paper principally focuses on the morphological differences,spatial pattern and regional types of rural settlements in Xuzhou City of Jiangsu Province in China.Using satellite images of Xuzhou City taken in 2007 a...This paper principally focuses on the morphological differences,spatial pattern and regional types of rural settlements in Xuzhou City of Jiangsu Province in China.Using satellite images of Xuzhou City taken in 2007 and 2008 and models of exploratory spatial data analysis(ESDA) and spatial metrics,the paper conducts a quantitative analysis of the morphological pattern of rural settlements,and finds significant characteristics.First,rural settlements in Xuzhou City are significantly agglomerated in terms of their spatial distribution;meanwhile,there is significant variation in the geographical density distribution.Second,the scale of rural settlements in Xuzhou City is larger than the average in Jiangsu Province,and the histogram of the scale data is more even and more like a gamma distribution.There are a significant high-value cluster in the scale distribution,and local negative correlation between the scale and density distribution of rural settlements in Xuzhou City.Third,the morphology of rural settlements in Xuzhou City shows relative regularity with good connection and integrity,but the spatial variation of the morphology is anisotropic.Finally,according to the characteristics of density,scale,and form of rural settlements,the rural settlements of Xuzhou City are divided into three types:A high-density and point-scattered type,a low-density and cluster-like type and a mass-like and sparse type.The research findings could be used as the scientific foundation for rural planning and community rebuilding,particularly in less-developed areas.展开更多
Eco-geographic regional system is formed by division or combination of natural features based on geographic relativity and comparison of major ecosystem factors(including biological and non-biological) and geographic ...Eco-geographic regional system is formed by division or combination of natural features based on geographic relativity and comparison of major ecosystem factors(including biological and non-biological) and geographic zonality.In previous studies, soil types were often taken as a basis for soil regionalization.However, the quantitative characteristics of soil indicators are fitter than the qualitative ones of soil types for modern regionalization researches.Based on the second China's national soil survey data and the provincial soil resource information, by principal analysis and discriminant analysis, this paper discusses the appropriate soil indicators as the complement of eco-geographic region indicator systems and the relationships between these soil indicators and soil types in regionalization.The results show that five indicators are used in eco-geographic zonality in mid-temperate zone of eastern China which are organic matter content, cation exchange capacity, pH, clay content and bulk density in topsoils.With a regression-kriging approach, the maps of soil indicators in mid-temperate zone of eastern China are compiled with a resolution of 1 km in every grid and the indicative meanings of these soil indicators are discussed.By cluster analysis it is proved that these soil indicators are better than the soil types and soil regionalization in delineating eco-geographic regions.展开更多
Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is...Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is pointed out that land reclamation of coal mining areas is basic guarantee of solving contradiction between coal mining areas and countryside,raising life of resident and ensuring regional sustainable development.展开更多
The resource-based city can divides according to the Israeli resource type and development phase two big standards. The resource-based city economic transformation strategy first should from the macroscopic level, see...The resource-based city can divides according to the Israeli resource type and development phase two big standards. The resource-based city economic transformation strategy first should from the macroscopic level, seek for the regional economic development the new superiority, next should act according to the new regional development favorable condition that establishes the pattern of industrial transformation from the microscopic level.展开更多
The contribution of climatic change and anthropogenic activities to vegetation productivity are not fully understood.In this study,we determined potential climate-driven gross primary production(GPPp)using a process-b...The contribution of climatic change and anthropogenic activities to vegetation productivity are not fully understood.In this study,we determined potential climate-driven gross primary production(GPPp)using a process-based terrestrial ecosystem model,and actual gross primary production(GPPa)using MODIS Approach in alpine grasslands on the Tibetan Plateau from 2000 to 2015.The GPPa was influenced by both climatic change and anthropogenic activities.Gross primary production caused by anthropogenic activities(GPPh)was calculated as the difference between GPPp and GPPa.Approximately 75.63%and 24.37%of the area percentages of GPPa showed increasing and decreasing trends,respectively.Climatic change and anthropogenic activities were dominant factors responsible for approximately 42.90%and 32.72%of the increasing area percentage of GPPa,respectively.In contrast,climatic change and anthropogenic activities were responsible for approximately 16.88%and 7.49%of the decreasing area percentages of GPPa,respectively.The absolute values of the change trends of GPPp and GPPh of meadows were greater than those of steppes.The GPPp change values were greater than those of GPPh at all elevations,whereas both GPPp and GPPh showed decreasing trends when elevations were greater than or equal to 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.Climatic change had stronger effects on the GPPa changes when elevations were lower than 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.In contrast,anthropogenic activities had stronger effects on the GPPa changes when elevations were greater than or equal to 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.Therefore,the causes of actual gross primary production changes varied with elevations,regions and grassland types,and grassland classification management should be considered on the Tibetan Plateau.展开更多
Ecological geographic regions, also called eco-regions, can be used to divide a remotely sensed image, which is helpful for reducing the complexity of land cover types within eco-regions and for improving the classifi...Ecological geographic regions, also called eco-regions, can be used to divide a remotely sensed image, which is helpful for reducing the complexity of land cover types within eco-regions and for improving the classification accuracy of land cover. In this case study in China, we improved a method of ecological geographic regionalization that is more suitable for remote sensing mapping of regional land cover, and we obtained new eco-regions. The canonical correspondence analysis(CCA) and k-means clustering were adopted in the ecological geographic regionalization using both seasonal remotely-sensed vegetation information and environmental data including climate, elevation and soil features. Our results show that the combination of seasonal vegetation information and the CCA performed well in the selection of the dominant environmental factor of the biogeographic pattern, and it can be used as regionalization indicators of eco-regions. We found that thermal factors are the most important driving forces of the biogeographic pattern in China, which followed by moisture factors. Two global land cover products(MODIS MCD12C1 and Glob Cover) were used to assess our eco-regions. The results show that our eco-regions performed better than that of a previous study regarding the complexity of land cover types, such as in the number of types and the proportional area of the major/secondary type. These results indicate that the method of ecological geographic regionalization, which is based on environmental factors associated with seasonal vegetation features, is effective for reducing the regional complexity of land cover.展开更多
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201003014-6)the National Natural Science Foundation of China(31160413)~~
文摘[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.
基金Under the auspices of National Natural Science Foundation of China(No.41071116)Humanity and Social ScienceFoundation of Ministry of Education(No.09YJC790225,11YJA630008)
文摘This paper principally focuses on the morphological differences,spatial pattern and regional types of rural settlements in Xuzhou City of Jiangsu Province in China.Using satellite images of Xuzhou City taken in 2007 and 2008 and models of exploratory spatial data analysis(ESDA) and spatial metrics,the paper conducts a quantitative analysis of the morphological pattern of rural settlements,and finds significant characteristics.First,rural settlements in Xuzhou City are significantly agglomerated in terms of their spatial distribution;meanwhile,there is significant variation in the geographical density distribution.Second,the scale of rural settlements in Xuzhou City is larger than the average in Jiangsu Province,and the histogram of the scale data is more even and more like a gamma distribution.There are a significant high-value cluster in the scale distribution,and local negative correlation between the scale and density distribution of rural settlements in Xuzhou City.Third,the morphology of rural settlements in Xuzhou City shows relative regularity with good connection and integrity,but the spatial variation of the morphology is anisotropic.Finally,according to the characteristics of density,scale,and form of rural settlements,the rural settlements of Xuzhou City are divided into three types:A high-density and point-scattered type,a low-density and cluster-like type and a mass-like and sparse type.The research findings could be used as the scientific foundation for rural planning and community rebuilding,particularly in less-developed areas.
基金National Natural Science Foundation of China,No.40771016
文摘Eco-geographic regional system is formed by division or combination of natural features based on geographic relativity and comparison of major ecosystem factors(including biological and non-biological) and geographic zonality.In previous studies, soil types were often taken as a basis for soil regionalization.However, the quantitative characteristics of soil indicators are fitter than the qualitative ones of soil types for modern regionalization researches.Based on the second China's national soil survey data and the provincial soil resource information, by principal analysis and discriminant analysis, this paper discusses the appropriate soil indicators as the complement of eco-geographic region indicator systems and the relationships between these soil indicators and soil types in regionalization.The results show that five indicators are used in eco-geographic zonality in mid-temperate zone of eastern China which are organic matter content, cation exchange capacity, pH, clay content and bulk density in topsoils.With a regression-kriging approach, the maps of soil indicators in mid-temperate zone of eastern China are compiled with a resolution of 1 km in every grid and the indicative meanings of these soil indicators are discussed.By cluster analysis it is proved that these soil indicators are better than the soil types and soil regionalization in delineating eco-geographic regions.
文摘Necessity of land reclamation is discussed, setting out viewpoint of sustainable development and land connotation and its attribute and combining destroyed forms and characteristics of land in coal mining areas. It is pointed out that land reclamation of coal mining areas is basic guarantee of solving contradiction between coal mining areas and countryside,raising life of resident and ensuring regional sustainable development.
文摘The resource-based city can divides according to the Israeli resource type and development phase two big standards. The resource-based city economic transformation strategy first should from the macroscopic level, seek for the regional economic development the new superiority, next should act according to the new regional development favorable condition that establishes the pattern of industrial transformation from the microscopic level.
基金National Natural Science Foundation of China(31600432)National Key Research Projects of China(2017YFA0604801,2016YFC0502005)+1 种基金Bingwei Outstanding Young Talents Program of Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(2018RC202)Tibet Science and Technology Major Projects of the Pratacultural Industry(XZ201901NA03)
文摘The contribution of climatic change and anthropogenic activities to vegetation productivity are not fully understood.In this study,we determined potential climate-driven gross primary production(GPPp)using a process-based terrestrial ecosystem model,and actual gross primary production(GPPa)using MODIS Approach in alpine grasslands on the Tibetan Plateau from 2000 to 2015.The GPPa was influenced by both climatic change and anthropogenic activities.Gross primary production caused by anthropogenic activities(GPPh)was calculated as the difference between GPPp and GPPa.Approximately 75.63%and 24.37%of the area percentages of GPPa showed increasing and decreasing trends,respectively.Climatic change and anthropogenic activities were dominant factors responsible for approximately 42.90%and 32.72%of the increasing area percentage of GPPa,respectively.In contrast,climatic change and anthropogenic activities were responsible for approximately 16.88%and 7.49%of the decreasing area percentages of GPPa,respectively.The absolute values of the change trends of GPPp and GPPh of meadows were greater than those of steppes.The GPPp change values were greater than those of GPPh at all elevations,whereas both GPPp and GPPh showed decreasing trends when elevations were greater than or equal to 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.Climatic change had stronger effects on the GPPa changes when elevations were lower than 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.In contrast,anthropogenic activities had stronger effects on the GPPa changes when elevations were greater than or equal to 5000 m,4600 m and 4800 m in meadows,steppes and all grasslands,respectively.Therefore,the causes of actual gross primary production changes varied with elevations,regions and grassland types,and grassland classification management should be considered on the Tibetan Plateau.
基金Financial support for the study was provided by the China Postdoctoral Science Foundation (Grant No. 2015M570431)the Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20150579)the State High Technology Funds of China (Grant No. 2009AA122001)
文摘Ecological geographic regions, also called eco-regions, can be used to divide a remotely sensed image, which is helpful for reducing the complexity of land cover types within eco-regions and for improving the classification accuracy of land cover. In this case study in China, we improved a method of ecological geographic regionalization that is more suitable for remote sensing mapping of regional land cover, and we obtained new eco-regions. The canonical correspondence analysis(CCA) and k-means clustering were adopted in the ecological geographic regionalization using both seasonal remotely-sensed vegetation information and environmental data including climate, elevation and soil features. Our results show that the combination of seasonal vegetation information and the CCA performed well in the selection of the dominant environmental factor of the biogeographic pattern, and it can be used as regionalization indicators of eco-regions. We found that thermal factors are the most important driving forces of the biogeographic pattern in China, which followed by moisture factors. Two global land cover products(MODIS MCD12C1 and Glob Cover) were used to assess our eco-regions. The results show that our eco-regions performed better than that of a previous study regarding the complexity of land cover types, such as in the number of types and the proportional area of the major/secondary type. These results indicate that the method of ecological geographic regionalization, which is based on environmental factors associated with seasonal vegetation features, is effective for reducing the regional complexity of land cover.