When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoel...When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coemcient is ~alculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.展开更多
The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main...The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main driver to satisfy slew rate of output data, receiver includes optimized topology to improve preci- sion of received data. The circuit simulation is based on Cadence’s spectre software and Taiwan Semiconduc- tor Manufacture Corporation’s library of 0.25μm mixed-signal Complementary Metal-Oxide Semiconductor (CMOS) model. The front and post-simulation results reveal that the transceiver designed can transmit and re- ceive high-speed data in 480Mbps, which is in agreement with USB2.0 specification. The chip of physi- cal-layer transceiver has been designed and implemented with 0.25μm standard CMOS technology.展开更多
The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequen...The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system.Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire,and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.展开更多
We reported an efficient diode pumped Nd∶YVO4 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7.5 W, 2.81 W average output power ...We reported an efficient diode pumped Nd∶YVO4 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7.5 W, 2.81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37.5%, and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.展开更多
A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispe...A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispersion, third-order dispersion, self-phase and cross-phase modulations, self-steepening and shock formation, Raman depletion, propagation loss, two-photon absorption, free-carrier absorption, and free-carrier dispersion. Finally, the temporal and spectral characteristics of 100 fs optical pulses at 1.55 μm are numerically observed in 5-mm-long waveguides while considering different initial chirps and incident peak intensity levels.展开更多
Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-...Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (P Wgl ), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthedpy (H), entropy (S), and the heat capacity (Cv ) are also successfully obtained.展开更多
It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of th...It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.展开更多
Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of n...Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.展开更多
Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted drama...Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,展开更多
基金the National Natural Science Foundation of China under
文摘When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coemcient is ~alculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.
文摘The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main driver to satisfy slew rate of output data, receiver includes optimized topology to improve preci- sion of received data. The circuit simulation is based on Cadence’s spectre software and Taiwan Semiconduc- tor Manufacture Corporation’s library of 0.25μm mixed-signal Complementary Metal-Oxide Semiconductor (CMOS) model. The front and post-simulation results reveal that the transceiver designed can transmit and re- ceive high-speed data in 480Mbps, which is in agreement with USB2.0 specification. The chip of physi- cal-layer transceiver has been designed and implemented with 0.25μm standard CMOS technology.
文摘The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system.Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire,and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.
基金National Natural Science Foundation of China (50602037) Award Fund of Shandong Excellent Young Scientists(2005BS04001)
文摘We reported an efficient diode pumped Nd∶YVO4 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7.5 W, 2.81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37.5%, and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.
基金National Natural Science Foundation of China(60677023)
文摘A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispersion, third-order dispersion, self-phase and cross-phase modulations, self-steepening and shock formation, Raman depletion, propagation loss, two-photon absorption, free-carrier absorption, and free-carrier dispersion. Finally, the temporal and spectral characteristics of 100 fs optical pulses at 1.55 μm are numerically observed in 5-mm-long waveguides while considering different initial chirps and incident peak intensity levels.
基金Support by the National Natural Science Foundation of China under Grant No.10776022the National Key Laboratory Fund for Shock Wave and Detonation Physics Research of the China Academy of Engineering Physics and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20090181110080
文摘Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (P Wgl ), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthedpy (H), entropy (S), and the heat capacity (Cv ) are also successfully obtained.
文摘It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.
基金supported by the National Natural Science Foundation of China(11274380,91433103,11622437,61674171,and 61761166009)the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China(16XNLQ01)+1 种基金The Hong Kong Polytechnic University(G-SB53)J.Q. and C.W. were supported by the Outstanding Innovative Talents Cultivation Funded Programs 2016 and 2017 of Renmin University of China,respectively
文摘Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB632900)National Natural Science Foundation of China(Grant Nos.61390502&21373068)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS201607B)
文摘Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,