Menopause is one of the key physiological events in the female life and can increase the risk for a number of complex autoimmune, neurodegenerative, metabolic, and cardiovascular disorders. Circulating monocytes can d...Menopause is one of the key physiological events in the female life and can increase the risk for a number of complex autoimmune, neurodegenerative, metabolic, and cardiovascular disorders. Circulating monocytes can differentiate into various cell types and play an important role in tissue morphogenesis and immune response. We studied gene expression profiles of peripheral blood monocytes in healthy pre- and postmenopausal women using Affymetrix Human U133A GeneChip array that contains probes for -14,500 genes. Comparative analyses between the samples showed that 20 genes were up- and 20 were down-regulated. Of these genes, 28 were classified into six major GO categories relevant to such biological processes as the cell proliferation, immune response, cellular metabolism, and the others. The remaining 12 genes have yet unidentified biological functions. Our results support the hypothesis that functional state of circulating monocytes is indeed affected by menopause, and resulting changes may be determined through the genomewide gene expression profiling. Several differentially expressed genes identified in this study may be candidates for further studies of menopause-associated systemic autoimmune, neurodegenerative, and cardiovascular disorders. Our study is only the first attempt in this direction, but it lays a basis for further research.展开更多
Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application...Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application-specific integrated circuit transceiver tbr Human Body Commnunication (HBC) is presented and the characteristics of HBC are investigated. A high data rate On-Off Keying (OOK)/Frequency-Shift Keying (FSK) modulation protocol and an OOK/FSK delrodulator circuit are introduced in this paper, with a data-rate-to-carrier-frequency ratio up to 70%. A low noise amplifier is proposed to handle the dynamic range problem and improve the sensitivity of the receiver path. In addi-tion, a low power autonmatic-gain-control system is realized using a novel architecture, thereby render-ing the peak detector circuit and loop filter unneces-sary. Finally, the complete chip is fabricated. Simula-tion results suggest receiver sensitivity to be-75 dBm. The transceiver shows an overall power con-smxption of 32 mW when data rate is 5 Mbps, de-livering a P1dB output power of - 30 dBm.展开更多
A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibr...A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibration powder feeding apparatus have been tested, the functional relation between powder feeding velocity V L and current I has been made out so that the controlling system can not only automatically make out the quantity of the powder according to the width of the steel belt, powder density, production speed and filling ratio, but also adjust the powder feeding speed according to the real production speed, keeping a stable filling ratio.展开更多
Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial d...Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.展开更多
With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to sol...With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to solve the interconnection of on-chip device. The paper proposes a network-on-chip dynamic and adaptive algorithm which selects NoC platform with 2-dimension mesh as the carrier, incorporates communication energy consumption and delay into unified cost function and uses ant colony optimization to realize NOC map facing energy consumption and delay. The experiment indicates that compared with random map, single objective optimization can separately saves (30% - 47 %) and ( 20% - 39%) in communication energy consumption and execution time compared with random map, and joint objective optimization can further excavate the potential of time dimension in mapping scheme dominated by the energy.展开更多
Adsorption reactions between surfaces of nanodiamond and nanosilica with diameter of 100 nm prepared as suspension solutions of 0.25μg/μL and lysozyme molecule with different concentrations of 7 mmol/L PPBS at pH=7,...Adsorption reactions between surfaces of nanodiamond and nanosilica with diameter of 100 nm prepared as suspension solutions of 0.25μg/μL and lysozyme molecule with different concentrations of 7 mmol/L PPBS at pH=7, 9, 11, and 13 have been investigated by fluores- cence spectroscopy. Adsorption reaction constants and coverages of lysozyme with different concentrations of 0-1000 nmol/L under the influences of different pH values have been ob- tained. Helicities and conformations of the adsorbed lysozyme molecules, free spaces of every adsorbed lysozyme molecule on the surfaces of nanopartieles at different concentrations and pH values have been deduced and discussed. The highest adsorption capabilities for both sys- tems and conformational efficiency of the adsorbed lysozyme molecule at pH=13 have been obtained. Lysozyme molecules can be prepared, adsorbed and carried with optimal activity and helicity, with 2 and 10 mg/m2 on unit nanosurface, 130 and 150 mg/g with respect to the weight of nanoparticle, within the linear regions of the coverages at around 150-250 nmol/L and four pH values for nanodiamond and nanosilica, respectively. They can be prepared in the tightest packed form, with 20 and 55 mg/m2, 810-1680 and 580-1100 mg/g at threshold concentrations and four pH values for nanodiamond and nanosilica, respectively.展开更多
Here we present an adaptation of NimbleGen 2.1M-probe array sequence capture for whole exome sequencing using the Illumina Genome Analyzer (GA) platform.The protocol involves two-stage library construction.The specifi...Here we present an adaptation of NimbleGen 2.1M-probe array sequence capture for whole exome sequencing using the Illumina Genome Analyzer (GA) platform.The protocol involves two-stage library construction.The specificity of exome enrichment was approximately 80% with 95.6% even coverage of the 34 Mb target region at an average sequencing depth of 33-fold.Comparison of our results with whole genome shot-gun resequencing results showed that the exome SNP calls gave only 0.97% false positive and 6.27% false negative variants.Our protocol is also well suited for use with whole genome amplified DNA.The results presented here indicate that there is a promising future for large-scale population genomics and medical studies using a whole exome sequencing approach.展开更多
文摘Menopause is one of the key physiological events in the female life and can increase the risk for a number of complex autoimmune, neurodegenerative, metabolic, and cardiovascular disorders. Circulating monocytes can differentiate into various cell types and play an important role in tissue morphogenesis and immune response. We studied gene expression profiles of peripheral blood monocytes in healthy pre- and postmenopausal women using Affymetrix Human U133A GeneChip array that contains probes for -14,500 genes. Comparative analyses between the samples showed that 20 genes were up- and 20 were down-regulated. Of these genes, 28 were classified into six major GO categories relevant to such biological processes as the cell proliferation, immune response, cellular metabolism, and the others. The remaining 12 genes have yet unidentified biological functions. Our results support the hypothesis that functional state of circulating monocytes is indeed affected by menopause, and resulting changes may be determined through the genomewide gene expression profiling. Several differentially expressed genes identified in this study may be candidates for further studies of menopause-associated systemic autoimmune, neurodegenerative, and cardiovascular disorders. Our study is only the first attempt in this direction, but it lays a basis for further research.
基金This study was supported partially by the Projects of National Natural Science Foundation of China under Crants No. 60932001, No.61072031 the National 863 Program of China un-der Crant No. 2012AA02A604+3 种基金 the National 973 Program of China under Cwant No. 2010CB732606 the Next Generation Communication Technology Major Project of National S&T un-der Crant No. 2013ZX03005013 the "One-hundred Talent" and the "Low-cost Healthcare" Programs of Chinese Academy of Sciences and the Guangdong Innovation Research Team Funds for Low-cost Healthcare and Irrage-Guided Therapy.
文摘Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application-specific integrated circuit transceiver tbr Human Body Commnunication (HBC) is presented and the characteristics of HBC are investigated. A high data rate On-Off Keying (OOK)/Frequency-Shift Keying (FSK) modulation protocol and an OOK/FSK delrodulator circuit are introduced in this paper, with a data-rate-to-carrier-frequency ratio up to 70%. A low noise amplifier is proposed to handle the dynamic range problem and improve the sensitivity of the receiver path. In addi-tion, a low power autonmatic-gain-control system is realized using a novel architecture, thereby render-ing the peak detector circuit and loop filter unneces-sary. Finally, the complete chip is fabricated. Simula-tion results suggest receiver sensitivity to be-75 dBm. The transceiver shows an overall power con-smxption of 32 mW when data rate is 5 Mbps, de-livering a P1dB output power of - 30 dBm.
文摘A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibration powder feeding apparatus have been tested, the functional relation between powder feeding velocity V L and current I has been made out so that the controlling system can not only automatically make out the quantity of the powder according to the width of the steel belt, powder density, production speed and filling ratio, but also adjust the powder feeding speed according to the real production speed, keeping a stable filling ratio.
基金Supported by Innovative Program of the Chinese Academy of Sciences (No. KGCY-SYW-407-02)Grand International Cooperation Foundation of Shanghai Science and Technology Commission (No. 052207046)
文摘Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.
文摘With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to solve the interconnection of on-chip device. The paper proposes a network-on-chip dynamic and adaptive algorithm which selects NoC platform with 2-dimension mesh as the carrier, incorporates communication energy consumption and delay into unified cost function and uses ant colony optimization to realize NOC map facing energy consumption and delay. The experiment indicates that compared with random map, single objective optimization can separately saves (30% - 47 %) and ( 20% - 39%) in communication energy consumption and execution time compared with random map, and joint objective optimization can further excavate the potential of time dimension in mapping scheme dominated by the energy.
文摘Adsorption reactions between surfaces of nanodiamond and nanosilica with diameter of 100 nm prepared as suspension solutions of 0.25μg/μL and lysozyme molecule with different concentrations of 7 mmol/L PPBS at pH=7, 9, 11, and 13 have been investigated by fluores- cence spectroscopy. Adsorption reaction constants and coverages of lysozyme with different concentrations of 0-1000 nmol/L under the influences of different pH values have been ob- tained. Helicities and conformations of the adsorbed lysozyme molecules, free spaces of every adsorbed lysozyme molecule on the surfaces of nanopartieles at different concentrations and pH values have been deduced and discussed. The highest adsorption capabilities for both sys- tems and conformational efficiency of the adsorbed lysozyme molecule at pH=13 have been obtained. Lysozyme molecules can be prepared, adsorbed and carried with optimal activity and helicity, with 2 and 10 mg/m2 on unit nanosurface, 130 and 150 mg/g with respect to the weight of nanoparticle, within the linear regions of the coverages at around 150-250 nmol/L and four pH values for nanodiamond and nanosilica, respectively. They can be prepared in the tightest packed form, with 20 and 55 mg/m2, 810-1680 and 580-1100 mg/g at threshold concentrations and four pH values for nanodiamond and nanosilica, respectively.
基金supported by the Chinese Academy of Sciences (Grant Nos.GJHZ0701-6 and KSCX-YWN-023)the National Natural Science Foundation of China (Grant Nos.30725008,90403130,90608010,30221004,90612019 and 30392130)the National Basic Research Program of China (Grant Nos.2007CB815701,2007CB815703 and 2007CB815705)
文摘Here we present an adaptation of NimbleGen 2.1M-probe array sequence capture for whole exome sequencing using the Illumina Genome Analyzer (GA) platform.The protocol involves two-stage library construction.The specificity of exome enrichment was approximately 80% with 95.6% even coverage of the 34 Mb target region at an average sequencing depth of 33-fold.Comparison of our results with whole genome shot-gun resequencing results showed that the exome SNP calls gave only 0.97% false positive and 6.27% false negative variants.Our protocol is also well suited for use with whole genome amplified DNA.The results presented here indicate that there is a promising future for large-scale population genomics and medical studies using a whole exome sequencing approach.