Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis...For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Exper...Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.展开更多
In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpres...In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.展开更多
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and ...In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.展开更多
To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomo...To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.展开更多
The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related inf...The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related information for the tire marks. When the tire marks simulation results fit the real one well, the state of vehicle can be understood as the real state in the accident. Based on above, the vehicle velocity and direction are decided. According to the velocity and direction of the vehicle, the complete accident process can be simulated. With the help of the Pc-Crash software, the method has been applied in typical collision accident cases analysis. The reconstruction results will provide the scientific and numerical references for vehicle collision accidents analyzing and appraising.展开更多
In this study on the nature of pressure signals generated by a deterministic or stochastic process in a bubbling fluidized bed, pressure fluctuation measurements were carried out in a 300-mm-diamet column at 0.090 m...In this study on the nature of pressure signals generated by a deterministic or stochastic process in a bubbling fluidized bed, pressure fluctuation measurements were carried out in a 300-mm-diamet column at 0.090 m and 0.40 m above the distributor for different gas velocities. The method of detecting deterministic dynamic underlying pressure signals is proposed on the basis of predictability of pressure fluctuations. The deterministic nature of dynamics in fluidizing system was verified. The deterministic level of dynamics in fluidizing system was analyzed for different locations of pressure measurements and different gas velocities.展开更多
In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is...In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is established based on Matlab/Simulink sofware. The power spectral density (PSD) and the weighted root mean square (RMS) of acceleration responses of the vertical driver s seat, the cab s pitch and roll angle are chosen as objective functions in low-frequency range. Experimental investigation is also used to verify the accuracy of the model. The influence of the damping coefficients of the AHM on the cab s ride quality is analyzed, and damping coefficients are then optimized via a genetic algorithm program. The research results show that the cab s rubber mounts added by the AHM clearly improve the ride quality under various operating conditions. Particularly, with the optimal damping coefficients of the front-end mounts c a 1,2 = 1 500 N · s/m and of the rear-end mounts c a 3,4 =2 335 N · s/m, the weighted RMS values of the driver s seat, the cab s pitch and roll angle are reduced by 22.2%, 18.8%, 58.7%, respectively. Under the condition of the vehicle travelling, with the optimal damping coefficients of c a 1,2 = 1 500 N · s/m and c a 3,4 =1 882 N · s/m, the maximum PSD values of the driver s seat, the cab s pitch and roll angle are clearly decreased by 36.7%, 54.7% and 50.6% under the condition of the vehicle working.展开更多
AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility ...AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility and bacteria and mucosa under psychological stress. METHODS: Sixty mice were randomly divided into psychological stress group and control group. Each group were subdivided into small intestinal motility group (n= 10), bacteria group (n = 10), and D-xylose administered to stomach group (n= 10). An animal model with psychological stress was established housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (Escherichia coli) and anaerobes (Lactobacilli). The quantitation of bacteria was expressed as Iog10(colony forming units/g). D-xylose levels in plasma were measured for estimating trie damage of small intestinal mucosa. RESULTS: Small intestinal transit was inhibited (39.80±9.50% vs 58.79±11.47%,P<0.01) in mice after psychological stress, compared with the controls. Psychological stress resulted in quantitative alterations in the aerobes (E.coli). There was an increase in the number of E coli in the proximal small intestinal flora (1.78±0.30 log10(CFU/g) vs 1.37±0.21 log10(CFU/g), P<0.01), and there was decrease in relative proportion of Lactobacilli and E.coli of stressed mice (0.53±0.63 vs 1.14±1.07,P<0.05), while there was no significant difference in the anaerobes (Lactobacilli) between the two groups (2.31±0.70 log10 (CFU/g) vs 2.44±0.37 log10(CFU/g), P>0.05). D-xylose concentrations in plasma in psychological stress mice were significantly higher than those in the control group (2.90±0.89 mmol/L vs 0.97±0.33 mmol/L, P<0.01). CONCLUSION: Small intestinal dysfunction under psychological stress may be related to the small intestinal motility disorder and dysbacteriosis and the damage of mucosa probably caused by psychological stress.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel wi...Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel with a speed mode of deceleration. Thus, to investigate the effect of speed modes on pressure waves, three-dimensional compressible unsteady Reynolds-averaged Navier-Stokes simulations and the sliding mesh are used to simulate pressure waves on train surfaces and tunnel walls when trains passing through a tunnel with three different speed modes(a constant speed at350 km/h, a uniform deceleration from 350 to 300 km/h, and another uniform deceleration from 350 to 250 km/h).Compared with the constant speed, the peak-to-peak of the train surface pressure under the other two speed modes reaches a maximum difference of 11.0%. The maximum positive pressure difference of the tunnel wall under different speed modes is caused by the different attenuation of the friction effect when the train enters the tunnel, and the maximum difference is 12.8%. The difference of the maximum negative pressure on the tunnel wall is caused by the different speed and pressure wave intensity of the train arriving at the same measuring point in different speed modes,and the maximum difference is 15.8%. Hence, it can be concluded that a speed mode of deceleration for trains passing a tunnel can effectively alleviate the aerodynamic effect in the tunnel, especially for the pressure on the tunnel wall.展开更多
For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with ...For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.展开更多
Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analy...Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analytical formulas for calculating the negative excess porewater pressures and the effective stresses were derived based on one-dimensional consolidation theory and Terzaghi’s effective stress principle. The influence of the dissipation of negative excess porewater pressure on earth pressure inside and outside a foundation pit and the stability of the retaining structure were analyzed through a numerical example. It was indicated that the dissipation of negative excess porewater pressure is harmful to the stability of the retaining structure and that rapid construction can make full use of the negative porewater pressure.展开更多
The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophagea...The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金The National Natural Science Foundation of China (No.50708056)Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province(No.2008BS09015)+1 种基金the Natural Science Foundation of Shandong Province (No.Q2006F02)Key Technologies R & D Program of Shandong Province (No.2008GG10006009)
文摘For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
基金the National Natural Science Foundation of China (No.29276260, No.20176043).ACKN0WLEDGEMENT The authors would like to thank Dr. Zhang Jian- wei who worked a lot in preparation of the apparatus for pressure fluctuation measurements.
文摘Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.
文摘In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.
基金financial support from the National Basic Research Program of China (No.2005CB221500)the National Natural Science Foundation of China (Nos.50534049,50674087 and 50974107)the Natural Science Foundation of Jiangsu Province (No.BK2007029)
文摘In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.
基金Projects(52072249,51605315)supported by the National Natural Science Foundation of ChinaProject(E2018210052)supported by the Natural Science Foundation of Hebei Province,ChinaProject(TPL1707)supported by the Open Funds for the State Key Laboratory of Traction Power,China。
文摘To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60174023)the National High Technology Research and Development Program of China(Grant No.863 -2007AA11Z234).
文摘The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related information for the tire marks. When the tire marks simulation results fit the real one well, the state of vehicle can be understood as the real state in the accident. Based on above, the vehicle velocity and direction are decided. According to the velocity and direction of the vehicle, the complete accident process can be simulated. With the help of the Pc-Crash software, the method has been applied in typical collision accident cases analysis. The reconstruction results will provide the scientific and numerical references for vehicle collision accidents analyzing and appraising.
文摘In this study on the nature of pressure signals generated by a deterministic or stochastic process in a bubbling fluidized bed, pressure fluctuation measurements were carried out in a 300-mm-diamet column at 0.090 m and 0.40 m above the distributor for different gas velocities. The method of detecting deterministic dynamic underlying pressure signals is proposed on the basis of predictability of pressure fluctuations. The deterministic nature of dynamics in fluidizing system was verified. The deterministic level of dynamics in fluidizing system was analyzed for different locations of pressure measurements and different gas velocities.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01)
文摘In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is established based on Matlab/Simulink sofware. The power spectral density (PSD) and the weighted root mean square (RMS) of acceleration responses of the vertical driver s seat, the cab s pitch and roll angle are chosen as objective functions in low-frequency range. Experimental investigation is also used to verify the accuracy of the model. The influence of the damping coefficients of the AHM on the cab s ride quality is analyzed, and damping coefficients are then optimized via a genetic algorithm program. The research results show that the cab s rubber mounts added by the AHM clearly improve the ride quality under various operating conditions. Particularly, with the optimal damping coefficients of the front-end mounts c a 1,2 = 1 500 N · s/m and of the rear-end mounts c a 3,4 =2 335 N · s/m, the weighted RMS values of the driver s seat, the cab s pitch and roll angle are reduced by 22.2%, 18.8%, 58.7%, respectively. Under the condition of the vehicle travelling, with the optimal damping coefficients of c a 1,2 = 1 500 N · s/m and c a 3,4 =1 882 N · s/m, the maximum PSD values of the driver s seat, the cab s pitch and roll angle are clearly decreased by 36.7%, 54.7% and 50.6% under the condition of the vehicle working.
文摘AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility and bacteria and mucosa under psychological stress. METHODS: Sixty mice were randomly divided into psychological stress group and control group. Each group were subdivided into small intestinal motility group (n= 10), bacteria group (n = 10), and D-xylose administered to stomach group (n= 10). An animal model with psychological stress was established housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (Escherichia coli) and anaerobes (Lactobacilli). The quantitation of bacteria was expressed as Iog10(colony forming units/g). D-xylose levels in plasma were measured for estimating trie damage of small intestinal mucosa. RESULTS: Small intestinal transit was inhibited (39.80±9.50% vs 58.79±11.47%,P<0.01) in mice after psychological stress, compared with the controls. Psychological stress resulted in quantitative alterations in the aerobes (E.coli). There was an increase in the number of E coli in the proximal small intestinal flora (1.78±0.30 log10(CFU/g) vs 1.37±0.21 log10(CFU/g), P<0.01), and there was decrease in relative proportion of Lactobacilli and E.coli of stressed mice (0.53±0.63 vs 1.14±1.07,P<0.05), while there was no significant difference in the anaerobes (Lactobacilli) between the two groups (2.31±0.70 log10 (CFU/g) vs 2.44±0.37 log10(CFU/g), P>0.05). D-xylose concentrations in plasma in psychological stress mice were significantly higher than those in the control group (2.90±0.89 mmol/L vs 0.97±0.33 mmol/L, P<0.01). CONCLUSION: Small intestinal dysfunction under psychological stress may be related to the small intestinal motility disorder and dysbacteriosis and the damage of mucosa probably caused by psychological stress.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金Project(2017J010-B)supported by the Technology Research and Development Program of China Railway CorporationProject(414010033)supported by the National Natural Science Foundation of China+1 种基金Project(CX20210232)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProjects(2021zzts0671,2021zzts0163)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel with a speed mode of deceleration. Thus, to investigate the effect of speed modes on pressure waves, three-dimensional compressible unsteady Reynolds-averaged Navier-Stokes simulations and the sliding mesh are used to simulate pressure waves on train surfaces and tunnel walls when trains passing through a tunnel with three different speed modes(a constant speed at350 km/h, a uniform deceleration from 350 to 300 km/h, and another uniform deceleration from 350 to 250 km/h).Compared with the constant speed, the peak-to-peak of the train surface pressure under the other two speed modes reaches a maximum difference of 11.0%. The maximum positive pressure difference of the tunnel wall under different speed modes is caused by the different attenuation of the friction effect when the train enters the tunnel, and the maximum difference is 12.8%. The difference of the maximum negative pressure on the tunnel wall is caused by the different speed and pressure wave intensity of the train arriving at the same measuring point in different speed modes,and the maximum difference is 15.8%. Hence, it can be concluded that a speed mode of deceleration for trains passing a tunnel can effectively alleviate the aerodynamic effect in the tunnel, especially for the pressure on the tunnel wall.
文摘For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.
基金Project (No. 20030335027) supported by the National ResearchFoundation for the Doctoral Program of Higher Education of China
文摘Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analytical formulas for calculating the negative excess porewater pressures and the effective stresses were derived based on one-dimensional consolidation theory and Terzaghi’s effective stress principle. The influence of the dissipation of negative excess porewater pressure on earth pressure inside and outside a foundation pit and the stability of the retaining structure were analyzed through a numerical example. It was indicated that the dissipation of negative excess porewater pressure is harmful to the stability of the retaining structure and that rapid construction can make full use of the negative porewater pressure.
基金Supported by Det Obelske Familiefond and Spar Nord Fonden
文摘The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.