In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the...In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.展开更多
A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs ...A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.展开更多
The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the ...The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the quarry paleosols from north of Barlad was accomplished based on field observations and macroscopic physic-chemical results. Three levels of paleosols with variable thickness were determined. These three fossils layers are interbedded by four loess deposits. The physical-chimical data provide important information for the paleosol genesis and depositional/climatic environments. The carbon content and C/N ratio indicate the strength of pedogenesis in the Pleistocene and trends of biomass accumulation.展开更多
PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The P...PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The PARASOL polarized radiance data at 490 nm,670 nm,and 865 nm increased with aerosol optical thickness(AOT) for fine-mode aerosols;however,the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols.Thus,the variation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols.Polarized radiances at three wavelengths for fine-and coarse-mode aerosols were analyzed and fitted by linear regression.The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols.However,the value for fine-mode aerosols is greater than 0.60.The Support Vector Machine method(SVM) based on 12 vector features was used to discriminate clear sky,coarse dust aerosols,fine-mode aerosols,and cloud.Two cases were given and validated by AErosol RObotic NETwork(AERONET) measurements,MODIS(Moderate Resolution Imaging Spectroradiometer) FMF(Fine Mode Fraction at 550 nm) images,PARASOL RGB(Red Green Blue) images,and CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization) VFM(Vertical Feature Mask) data.展开更多
Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over b...Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.展开更多
文摘In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.
文摘A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.
文摘The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the quarry paleosols from north of Barlad was accomplished based on field observations and macroscopic physic-chemical results. Three levels of paleosols with variable thickness were determined. These three fossils layers are interbedded by four loess deposits. The physical-chimical data provide important information for the paleosol genesis and depositional/climatic environments. The carbon content and C/N ratio indicate the strength of pedogenesis in the Pleistocene and trends of biomass accumulation.
基金supported by the National Basic Research Program of China (Grant Nos.2010CB950804 and 2013CB955801)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues (Grant No.XDA05040202)
文摘PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The PARASOL polarized radiance data at 490 nm,670 nm,and 865 nm increased with aerosol optical thickness(AOT) for fine-mode aerosols;however,the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols.Thus,the variation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols.Polarized radiances at three wavelengths for fine-and coarse-mode aerosols were analyzed and fitted by linear regression.The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols.However,the value for fine-mode aerosols is greater than 0.60.The Support Vector Machine method(SVM) based on 12 vector features was used to discriminate clear sky,coarse dust aerosols,fine-mode aerosols,and cloud.Two cases were given and validated by AErosol RObotic NETwork(AERONET) measurements,MODIS(Moderate Resolution Imaging Spectroradiometer) FMF(Fine Mode Fraction at 550 nm) images,PARASOL RGB(Red Green Blue) images,and CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization) VFM(Vertical Feature Mask) data.
基金supported by the Risk Reduction Programs of the Ministry of Civil Affairs of the People’s Republic of China(Grant No.TC088641)
文摘Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.