The fabrication and simulation of an electromagnetic microrelay are presented based on micro electromechanical systems (MEMS) technique.The microrelay dimensions of about 4mm×4mm×0 5mm are fabricated with t...The fabrication and simulation of an electromagnetic microrelay are presented based on micro electromechanical systems (MEMS) technique.The microrelay dimensions of about 4mm×4mm×0 5mm are fabricated with the common technique of micromachining.Compared with the traditional relays,a planar coil is substituted for a solenoid coil to favor the MEMS fabrication.Moreover,a bi supporter cantilever beam with high sensitivity is fabricated to act as the movable electrode of the microrelay.Theoretical calculations and simulations are also carried out with respect to the electromagnetic force yielded by the exciting electromagnetic coil.The structure and parameters concerning the electromagnetic microrelay can be optimized using the results.展开更多
This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils a...This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, the first three largest spectral radii...A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, the first three largest spectral radii in the class B(n) (n ≥9) together with the corresponding graphs are given.展开更多
文摘The fabrication and simulation of an electromagnetic microrelay are presented based on micro electromechanical systems (MEMS) technique.The microrelay dimensions of about 4mm×4mm×0 5mm are fabricated with the common technique of micromachining.Compared with the traditional relays,a planar coil is substituted for a solenoid coil to favor the MEMS fabrication.Moreover,a bi supporter cantilever beam with high sensitivity is fabricated to act as the movable electrode of the microrelay.Theoretical calculations and simulations are also carried out with respect to the electromagnetic force yielded by the exciting electromagnetic coil.The structure and parameters concerning the electromagnetic microrelay can be optimized using the results.
文摘This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
基金the National Natural Science Foundation of China(10331020).
文摘A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, the first three largest spectral radii in the class B(n) (n ≥9) together with the corresponding graphs are given.