In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate...In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.展开更多
Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mod...Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.展开更多
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc...Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.展开更多
To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experime...To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.展开更多
文摘In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.
基金supported by the key project of the National Natural Science Foundation of China (No.61431001)5G research program of China Mobile Research Institute (Grant No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(71210001,51338008)supported by the National Natural Science Foundation of ChinaProject supported by World Capital Cities Smooth Traffic Collaborative Innovation Center and Singapore National Research Foundation Under Its Campus for Research Excellence and Technology Enterprise(CREATE)Programme
文摘Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University of ChinaProject (20050533037) supported by the Doctoral Program of Higher Education of China
文摘To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.