A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observati...A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy.展开更多
Over the past 5 years there has been a rapid increase in the use of microarray technology in the field of cancer research, The majority of studies use microarray analysis of tumor biopsies for profiling of molecular c...Over the past 5 years there has been a rapid increase in the use of microarray technology in the field of cancer research, The majority of studies use microarray analysis of tumor biopsies for profiling of molecular characteristics in an attempt to produce robust classifiers for prognosis. There are now several published gene sets that have been shown to predict for aggressive forms of breast cancer, where patients are most likely to benefit from adjuvant chemotherapy and tumors most likely to develop distant metastases, or be resistant to treatment. The number of publications relating to the use of microarrays for analysis of normal tissue damage, after cancer treatment or genotoxic exposure, is much more limited. A PublVled literature search was conducted using the following keywords and combination of terms: radiation, normal tissue, microarray, gene expression profiling, prediction. With respect to normal tissue radiation injury, microarrays have been used in three ways: (1) to generate gene signatures to identify sensitive and resistant populations (prognosis); (2) to identify sets of biomarker genes for estimating radiation exposure, either accidental or as a result of terrorist attack (diagnosis); (3) to identify genes and pathways involved in tissue response to injury (mechanistic). In this article we will review all (relevant) papers that covered our literature search criteria on microarray technology as it has been applied to normal tissue radiation biology and discuss how successful this has been in defining predisposition markers for radiation sensitivity or how it has helped us to unravel molecular mechanisms leading to acute and late tissue toxicity. We also discuss some of the problems and limitations in application and interpretation of such data.展开更多
基金Projects(2012BAI18B05,2012BAI18B01)supported by the Twelfth Five-Year National Science&Technology Support Program of ChinaProject(2009CB93004)supported by the National Basic Researh Program of China
文摘A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy.
文摘Over the past 5 years there has been a rapid increase in the use of microarray technology in the field of cancer research, The majority of studies use microarray analysis of tumor biopsies for profiling of molecular characteristics in an attempt to produce robust classifiers for prognosis. There are now several published gene sets that have been shown to predict for aggressive forms of breast cancer, where patients are most likely to benefit from adjuvant chemotherapy and tumors most likely to develop distant metastases, or be resistant to treatment. The number of publications relating to the use of microarrays for analysis of normal tissue damage, after cancer treatment or genotoxic exposure, is much more limited. A PublVled literature search was conducted using the following keywords and combination of terms: radiation, normal tissue, microarray, gene expression profiling, prediction. With respect to normal tissue radiation injury, microarrays have been used in three ways: (1) to generate gene signatures to identify sensitive and resistant populations (prognosis); (2) to identify sets of biomarker genes for estimating radiation exposure, either accidental or as a result of terrorist attack (diagnosis); (3) to identify genes and pathways involved in tissue response to injury (mechanistic). In this article we will review all (relevant) papers that covered our literature search criteria on microarray technology as it has been applied to normal tissue radiation biology and discuss how successful this has been in defining predisposition markers for radiation sensitivity or how it has helped us to unravel molecular mechanisms leading to acute and late tissue toxicity. We also discuss some of the problems and limitations in application and interpretation of such data.