A new CVT(continuously variable transmission) design which is a traction drive variator has been introduced. Analytical predictions and experimental results of the steady state which demonstrate higher efficiencies an...A new CVT(continuously variable transmission) design which is a traction drive variator has been introduced. Analytical predictions and experimental results of the steady state which demonstrate higher efficiencies and power capacities of the new design are presented. The traction and power loss are then predicted by using models including evaluation of creep and spin in the contact patch. Analytical predictions of the transmission reach reasonable agreement with the experimental data, and the transmission efficiency of the system increases as the input torque increases while the input speed is certain. The research results can be further used in hydraulic traction drive CVT design and optimization.展开更多
基金Project(A2220060029)supported by the National Ministries of Basic Scientific Research Fund Project,ChinaProject(9140C340201113403)supported by the Foundation of the National Key Laboratory of Vehicular Transmission,China
文摘A new CVT(continuously variable transmission) design which is a traction drive variator has been introduced. Analytical predictions and experimental results of the steady state which demonstrate higher efficiencies and power capacities of the new design are presented. The traction and power loss are then predicted by using models including evaluation of creep and spin in the contact patch. Analytical predictions of the transmission reach reasonable agreement with the experimental data, and the transmission efficiency of the system increases as the input torque increases while the input speed is certain. The research results can be further used in hydraulic traction drive CVT design and optimization.