This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits ...In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits of aluminum electrolytic production. Fuzzy logic provides a suitable mechanism to describe the relationship between the process variables and the current efficiency. Fuzzy expert system based on Mamdani fuzzy inference process for aluminum electrolysis was adopted to adjust A1F3 addition and aluminum tapping volume. A novel variable universe approach was applied in the system to solve the problem that different electrolysis cells have different universes of variables. The system was applied to 300 kA aluminum electrolysis cells in a aluminum plant. Experimental results showed that the electrolyte temperature was kept stably between 945 and 955℃, the current efficiency reached 93.5%, and the DC power consumption was 13 000 kW.h per ton aluminum.展开更多
Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these sy...Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these systems has been introduced. With the aid of a simplified model, some extraordinary Feigenbaum constants have been found inside the period-doubling cascades, the relationship between the values of the extraordinary Feigenbaum constants and the quasi-discontinuity of the system has also been reported. The phenomenon has been observed in Pikovsky circuit and Rose-Hindmash model.展开更多
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformati...The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.展开更多
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti...Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a fine...Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a finer box-like frequency spectrum and others.Given the frequency distribution characteristics of the nondestructive testing signals from a rockbolt support system and based on the discrete harmonic wavelet transformation theory,we have effectively abstracted signals from frequency ranges concerned by removing useless high and low frequency signals from the testing signals of the rockbolt support system and obtained filtered signals with a reconstruction algorithm of harmonic wavelets.Finally,we applied the harmonic wavelet transformation in filtering analog signals and measured response signals of rockbolts.The results indicate that harmonic wavelets also have excellent filtering characteristics.展开更多
The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. ...The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.展开更多
A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic syste...A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.展开更多
Based on the technique of integral within a Weyl ordered product of operators, we present applications of the Weyl ordered two-mode Wigner operator for quantum mechanical entangled system, e.g., we derive the complex ...Based on the technique of integral within a Weyl ordered product of operators, we present applications of the Weyl ordered two-mode Wigner operator for quantum mechanical entangled system, e.g., we derive the complex Wigner transform and its relation to the complex fractional Fourier transform, as well as the entangled Radon transform.展开更多
It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlatio...It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlations (that include entanglement as a special kind of correlations) are ubiquitous for such systems. For a quantum state, if there are not non-classical correlations (quantum discord is zero) for one, there are in general non-classical correlations (quantum discord is non-zero) for another set of the composite system's degrees of freedom. The physical relevance of this "quantum correlations relativity" is emphasized also in the more general context.展开更多
In nonlinear error growth dynamics,the initial error cannot be accurately determined,and the forecast error,which is also uncertain,can be considered to be a random variable.Entropy in information theory is a natural ...In nonlinear error growth dynamics,the initial error cannot be accurately determined,and the forecast error,which is also uncertain,can be considered to be a random variable.Entropy in information theory is a natural measure of the uncertainty of a random variable associated with a probability distribution.This paper effectively combines statistical information theory and nonlinear error growth dynamics,and introduces some fundamental concepts of entropy in information theory for nonlinear error growth dynamics.Entropy based on nonlinear error can be divided into time entropy and space entropy,which are used to estimate the predictabilities of the whole dynamical system and each of its variables.This is not only applicable for investigating the dependence between any two variables of a multivariable system,but also for measuring the influence of each variable on the predictability of the whole system.Taking the Lorenz system as an example,the entropy of nonlinear error is applied to estimate predictability.The time and space entropies are used to investigate the spatial distribution of predictability of the whole Lorenz system.The results show that when moving around two chaotic attractors or near the edge of system space,a Lorenz system with lower sensitivity to the initial field behaves with higher predictability and a longer predictability limit.The example analysis of predictability of the Lorenz system demonstrates that the predictability estimated by the entropy of nonlinear error is feasible and effective,especially for estimation of predictability of the whole system.This provides a theoretical foundation for further work in estimating real atmospheric multivariable joint predictability.展开更多
The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d...The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.展开更多
The stabilization with receding horizon control (RHC) of It5 stochastic time-varying systems is studied in this paper. Based on monotonically non-increasing of optimal cost and stochastic Lyapunov stability theory, ...The stabilization with receding horizon control (RHC) of It5 stochastic time-varying systems is studied in this paper. Based on monotonically non-increasing of optimal cost and stochastic Lyapunov stability theory, a necessary and sufficient stabilization condition on the terminal weighting matrix is proposed, which guarantees the mean-square stability of the closed-loop system. The explicit receding horizon controller is obtained by employing stochastic maximum principle. Simulations demonstrate the effectiveness of the proposed method.展开更多
Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress an...Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress and the state-of-art results on simultaneous stabilization of single-input single-output linear time-invariant systems. Especially, the authors list the ever best results on the parameters involved in the well known "French Champagne Problem" and "Belgian Chocolate Problem" from the point of view of mathematical theoretical analysis and numerical calculation. And the authors observed that Boston claimed the lower bound of 5 can be enlarged to 0.976461 in 2012 is not accurate. The authors hope it will inspire further study on simultaneous stabilization of several linear systems.展开更多
The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has ...The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has been studied previously.The present work detailedly investigated the influence of the material size-effect and heterogeneity(inclusions near the indenter tip)on the indentation hardness using a size-dependent strain gradient plastic theory.And it was found that when considering the material size-ffect,shallow hard inclusions in the heterogeneous materials more significantly enhance the material indentation hardness compared with the size-independent materials which are based on the conventional plastic theory.This hardening effect is be-lieved to be related to the elevation of the load and local constraints of large deformation.The effect of material inhomogeneity mainly comes from the non-uniformity of the structure rather than the inclusion modulus itself especially when the size-effect is involved,and the transition range of the inclusion modulus'influence is pretty narrow.The effect of non-uniformity becomes negligible after the initial inclusion depth is larger than its diameter.The horizontal offset of the indenter from the inclusion is also of much sensitivity to the influence of the heterogeneous indentation.This paper focuses on the scaling relationships in micro-and nanoindentation,the influence of non-uniformity in microscopic materials is studied and supplemented as well.展开更多
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金Project (2009BAE85B00) supported by the National Key Technology R&D Program of ChinaProject (PHR20100509) supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China
文摘In aluminum electrolytic process, the variables affect the current efficiency and the stability of electrolysis cells. AIF3 addition and aluminum tapping volume are two important factors that affect economic benefits of aluminum electrolytic production. Fuzzy logic provides a suitable mechanism to describe the relationship between the process variables and the current efficiency. Fuzzy expert system based on Mamdani fuzzy inference process for aluminum electrolysis was adopted to adjust A1F3 addition and aluminum tapping volume. A novel variable universe approach was applied in the system to solve the problem that different electrolysis cells have different universes of variables. The system was applied to 300 kA aluminum electrolysis cells in a aluminum plant. Experimental results showed that the electrolyte temperature was kept stably between 945 and 955℃, the current efficiency reached 93.5%, and the DC power consumption was 13 000 kW.h per ton aluminum.
文摘Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these systems has been introduced. With the aid of a simplified model, some extraordinary Feigenbaum constants have been found inside the period-doubling cascades, the relationship between the values of the extraordinary Feigenbaum constants and the quasi-discontinuity of the system has also been reported. The phenomenon has been observed in Pikovsky circuit and Rose-Hindmash model.
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
文摘The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.
文摘Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
基金Financial support for this work provided by the National Basic Research Program of China (No.2007CB209400)the 111 Project of China (No.B07028)+2 种基金the Key Program of National Natural Science Foundation of China(No.50834004)the National Natural Science Foundation of China (No.50874104)the Natural Science Foundation of Jiangsu Province(No.BK2006040)
文摘Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a finer box-like frequency spectrum and others.Given the frequency distribution characteristics of the nondestructive testing signals from a rockbolt support system and based on the discrete harmonic wavelet transformation theory,we have effectively abstracted signals from frequency ranges concerned by removing useless high and low frequency signals from the testing signals of the rockbolt support system and obtained filtered signals with a reconstruction algorithm of harmonic wavelets.Finally,we applied the harmonic wavelet transformation in filtering analog signals and measured response signals of rockbolts.The results indicate that harmonic wavelets also have excellent filtering characteristics.
基金Supported by the Key Disciplines' Building Foundation of Henan Institute of Educationthe Natural Science Foundation of Education Bureau of Henan Province of China under Grant No. 2009A14003
文摘The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.
基金Project(911901204) supported by Youth Innovation Foundation of Beijing University of Aeronautics and Astronautics
文摘A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.
基金The project supported by National Natural Science Foundation of China under Grant No.10175057
文摘Based on the technique of integral within a Weyl ordered product of operators, we present applications of the Weyl ordered two-mode Wigner operator for quantum mechanical entangled system, e.g., we derive the complex Wigner transform and its relation to the complex fractional Fourier transform, as well as the entangled Radon transform.
基金supported by Ministry of Science Serbia (Grant No. 171028)in partfor MD by the ICTP-SEENET-MTP grant PRJ-09 "Strings and Cosmology"in frame of the SEENET-MTP Network
文摘It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlations (that include entanglement as a special kind of correlations) are ubiquitous for such systems. For a quantum state, if there are not non-classical correlations (quantum discord is zero) for one, there are in general non-classical correlations (quantum discord is non-zero) for another set of the composite system's degrees of freedom. The physical relevance of this "quantum correlations relativity" is emphasized also in the more general context.
基金supported by National Natural Science Foundation of China (Grant No. 40975031)
文摘In nonlinear error growth dynamics,the initial error cannot be accurately determined,and the forecast error,which is also uncertain,can be considered to be a random variable.Entropy in information theory is a natural measure of the uncertainty of a random variable associated with a probability distribution.This paper effectively combines statistical information theory and nonlinear error growth dynamics,and introduces some fundamental concepts of entropy in information theory for nonlinear error growth dynamics.Entropy based on nonlinear error can be divided into time entropy and space entropy,which are used to estimate the predictabilities of the whole dynamical system and each of its variables.This is not only applicable for investigating the dependence between any two variables of a multivariable system,but also for measuring the influence of each variable on the predictability of the whole system.Taking the Lorenz system as an example,the entropy of nonlinear error is applied to estimate predictability.The time and space entropies are used to investigate the spatial distribution of predictability of the whole Lorenz system.The results show that when moving around two chaotic attractors or near the edge of system space,a Lorenz system with lower sensitivity to the initial field behaves with higher predictability and a longer predictability limit.The example analysis of predictability of the Lorenz system demonstrates that the predictability estimated by the entropy of nonlinear error is feasible and effective,especially for estimation of predictability of the whole system.This provides a theoretical foundation for further work in estimating real atmospheric multivariable joint predictability.
基金supported by the National Natural Science Foundation of China (Grant No.10704001)the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos.KJ2010ZD08 and KJ2010B204)the Doctor Research Start-Up Program of Huainan Normal University
文摘The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.
基金supported by the Taishan Scholar Construction Engineering by Shandong Governmentthe National Natural Science Foundation of China under Grant Nos.61120106011 and 61573221
文摘The stabilization with receding horizon control (RHC) of It5 stochastic time-varying systems is studied in this paper. Based on monotonically non-increasing of optimal cost and stochastic Lyapunov stability theory, a necessary and sufficient stabilization condition on the terminal weighting matrix is proposed, which guarantees the mean-square stability of the closed-loop system. The explicit receding horizon controller is obtained by employing stochastic maximum principle. Simulations demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation under Grant Nos.61370176 and 61571064
文摘Simultaneous stabilization of linear systems is a fundamental issue in the system and control theory, and is of theoretical and practical significance. In this paper, the authors review the recent research progress and the state-of-art results on simultaneous stabilization of single-input single-output linear time-invariant systems. Especially, the authors list the ever best results on the parameters involved in the well known "French Champagne Problem" and "Belgian Chocolate Problem" from the point of view of mathematical theoretical analysis and numerical calculation. And the authors observed that Boston claimed the lower bound of 5 can be enlarged to 0.976461 in 2012 is not accurate. The authors hope it will inspire further study on simultaneous stabilization of several linear systems.
基金the National Natural Science Foundation of China(Grant Nos.11890681,12032001,and 11521202).
文摘The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has been studied previously.The present work detailedly investigated the influence of the material size-effect and heterogeneity(inclusions near the indenter tip)on the indentation hardness using a size-dependent strain gradient plastic theory.And it was found that when considering the material size-ffect,shallow hard inclusions in the heterogeneous materials more significantly enhance the material indentation hardness compared with the size-independent materials which are based on the conventional plastic theory.This hardening effect is be-lieved to be related to the elevation of the load and local constraints of large deformation.The effect of material inhomogeneity mainly comes from the non-uniformity of the structure rather than the inclusion modulus itself especially when the size-effect is involved,and the transition range of the inclusion modulus'influence is pretty narrow.The effect of non-uniformity becomes negligible after the initial inclusion depth is larger than its diameter.The horizontal offset of the indenter from the inclusion is also of much sensitivity to the influence of the heterogeneous indentation.This paper focuses on the scaling relationships in micro-and nanoindentation,the influence of non-uniformity in microscopic materials is studied and supplemented as well.