The diapirism in the Yinggehai Basin is a combined result of strong overpressure caused by rapid sedimentation of fine-grain sediments and the tensile stress field resulting from right-lateral slip of the boundary-fau...The diapirism in the Yinggehai Basin is a combined result of strong overpressure caused by rapid sedimentation of fine-grain sediments and the tensile stress field resulting from right-lateral slip of the boundary-fault. The diapirism showed multiple-stage, episodic nature, and caused intermittent counter-direction onlaps and changes in the thickness of strata. The shallow gas reservoirs in the diapir structural zone displayed obvious inter-reservoir compositional heterogeneities, and their filling history could be divided into 4 stages, with gases injected during different stages having different hydrocarbon gas, CO2 and N2 contents and different stable isotope compositions. The multiple-episode, intermittent activities of the diapirs, multiple-stage, non-continuous injections of fluids, and the transient thermal effect of fluid flow as well as the strong migration fractionation reflected episodic fluid injection and natural gas accumulation.展开更多
基金This project was supported by the National Natural Science Foundation of China (Grant No.40125008) and 973 Project (Grant No. 1999043309).
文摘The diapirism in the Yinggehai Basin is a combined result of strong overpressure caused by rapid sedimentation of fine-grain sediments and the tensile stress field resulting from right-lateral slip of the boundary-fault. The diapirism showed multiple-stage, episodic nature, and caused intermittent counter-direction onlaps and changes in the thickness of strata. The shallow gas reservoirs in the diapir structural zone displayed obvious inter-reservoir compositional heterogeneities, and their filling history could be divided into 4 stages, with gases injected during different stages having different hydrocarbon gas, CO2 and N2 contents and different stable isotope compositions. The multiple-episode, intermittent activities of the diapirs, multiple-stage, non-continuous injections of fluids, and the transient thermal effect of fluid flow as well as the strong migration fractionation reflected episodic fluid injection and natural gas accumulation.