Aims Habitat loss and fragmentation are the main threats to biodiversity in tropical forests.Agroecosystems such as shaded cocoa plantations(SCP)provide refuge for tropical forest biota.However,it is poorly known whet...Aims Habitat loss and fragmentation are the main threats to biodiversity in tropical forests.Agroecosystems such as shaded cocoa plantations(SCP)provide refuge for tropical forest biota.However,it is poorly known whether the interspecific ecological interactions are also maintained in these transformed habitats.We evaluated the diversity,reproductive status and photosynthetic metabolism(CAM or C3)of the epiphytic orchid community,and their interactions with host trees(phorophytes)in SCP compared to tropical rainforest(TRF).Methods In southeastern Mexico,three sites each in TRF and SCP were studied,with four 400 m2 plots established at each site to record all orchids and their phorophytes.We determined the reproductive(adult)or non-reproductive(juvenile)status of each orchid individual in relation to the presence or absence,respectively,of flowers/fruits(or remnants),and assigned the photosynthetic pathway of each orchid species based in literature.We used true diversity and ecological networks approaches to analyze orchid diversity and orchid–phorophyte interactions,respectively.Important Findings In total,607 individuals belonging to 47 orchid species were recorded.Orchid diversity was higher in TRF(19 effective species)than in SCP(11 effective species)and only seven species were shared between the two habitats.CAM orchid species were more frequent in SCP(53%)than in TRF(14%).At the community level the proportion of non-reproductive and reproductive orchid species and the nested structure and specialization level of the TRF orchid–phorophyte network were maintained in SCP.However,only a subset of TRF epiphytic orchids remains in SCP,highlighting the importance of protecting TRF.Despite this difference,shaded agroecosystems such as SCP can maintain some of the diversity and functions of natural forests,since the SCP epiphytic orchid community,mainly composed of CAM species,and its phorophytes constitute a nested interaction network,which would confer robustness to disturbances.展开更多
Scutellaria baicalensis Georgi, or Chinese skullcap, has been widely used as a medicinal plant in China for thousands of years, where the preparation from its roots is called Huang-Qin. It has been applied in the trea...Scutellaria baicalensis Georgi, or Chinese skullcap, has been widely used as a medicinal plant in China for thousands of years, where the preparation from its roots is called Huang-Qin. It has been applied in the treatment of diarrhea, dysentery, hypertension, hemorrhaging, insomnia,inflammation and respiratory infections. Flavones such as baicalin, wogonoside and their aglycones baicalein wogonin are the major bioactive compounds extracted from the root of S. baicalensis. These flavones have been reported to have various pharmacological functions, including anti-cancer,hepatoprotection, antibacterial and antiviral, antioxidant,anticonvulsant and neuroprotective effects. In this review,we focus on clinical applications and the pharmacological properties of the medicinal plant and the flavones extracted from it. We also describe biotechnological and metabolic methods that have been used to elucidate the biosynthetic pathways of the bioactive compounds in Scutellaria.展开更多
基金supported by Consejo Nacional de Ciencia y Tecnología[fellowship 250340 to J.M.L]Instituto de Ecología,A.C.[20030-10144]This manuscript was written during the postdoctoral research of J.M.L.,supported by the Secretaría de Educación Pública-Programa para el Desarrollo Profesional Docente[grant 511-6/17-8702].
文摘Aims Habitat loss and fragmentation are the main threats to biodiversity in tropical forests.Agroecosystems such as shaded cocoa plantations(SCP)provide refuge for tropical forest biota.However,it is poorly known whether the interspecific ecological interactions are also maintained in these transformed habitats.We evaluated the diversity,reproductive status and photosynthetic metabolism(CAM or C3)of the epiphytic orchid community,and their interactions with host trees(phorophytes)in SCP compared to tropical rainforest(TRF).Methods In southeastern Mexico,three sites each in TRF and SCP were studied,with four 400 m2 plots established at each site to record all orchids and their phorophytes.We determined the reproductive(adult)or non-reproductive(juvenile)status of each orchid individual in relation to the presence or absence,respectively,of flowers/fruits(or remnants),and assigned the photosynthetic pathway of each orchid species based in literature.We used true diversity and ecological networks approaches to analyze orchid diversity and orchid–phorophyte interactions,respectively.Important Findings In total,607 individuals belonging to 47 orchid species were recorded.Orchid diversity was higher in TRF(19 effective species)than in SCP(11 effective species)and only seven species were shared between the two habitats.CAM orchid species were more frequent in SCP(53%)than in TRF(14%).At the community level the proportion of non-reproductive and reproductive orchid species and the nested structure and specialization level of the TRF orchid–phorophyte network were maintained in SCP.However,only a subset of TRF epiphytic orchids remains in SCP,highlighting the importance of protecting TRF.Despite this difference,shaded agroecosystems such as SCP can maintain some of the diversity and functions of natural forests,since the SCP epiphytic orchid community,mainly composed of CAM species,and its phorophytes constitute a nested interaction network,which would confer robustness to disturbances.
基金supported by CAS/JIC and Centre of Excellence for Plant and Microbial Sciences (CEPAMS) joint foundationQZ and CM were supported by the Institute Strategic Program Understanding and Exploiting Plant and Microbial Secondary Metabolism (BB/J004596/1) from the BBSRC to JICQZ and XYC were also supported by the Special Fund for Shanghai Landscaping Administration Bureau Program (F132424, F112418 and G152421)
文摘Scutellaria baicalensis Georgi, or Chinese skullcap, has been widely used as a medicinal plant in China for thousands of years, where the preparation from its roots is called Huang-Qin. It has been applied in the treatment of diarrhea, dysentery, hypertension, hemorrhaging, insomnia,inflammation and respiratory infections. Flavones such as baicalin, wogonoside and their aglycones baicalein wogonin are the major bioactive compounds extracted from the root of S. baicalensis. These flavones have been reported to have various pharmacological functions, including anti-cancer,hepatoprotection, antibacterial and antiviral, antioxidant,anticonvulsant and neuroprotective effects. In this review,we focus on clinical applications and the pharmacological properties of the medicinal plant and the flavones extracted from it. We also describe biotechnological and metabolic methods that have been used to elucidate the biosynthetic pathways of the bioactive compounds in Scutellaria.