Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to...Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research.展开更多
The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure...The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure- ments of pollution in the troposphere (MOPITT) and mod- em-era retrospective analysis for research and applications (MERRA) meteorological products, and atmospheric chemistry and climate model intercomparison project (ACCMIP) surface emission inventories, the influences of atmospheric dynamics and surface emissions are investi- gated. The results show that there are four centers of highly concentrated CO mixing ratio over tropical areas in differ- ent seasons: two in the Northern Hemisphere and another two in the Southern Hemisphere. All of these centers cor- respond to local deep convective systems and mon- soons/anticyclones. The authors suggest that both deep convections and anticyclones affect CO in the tropical tro- posphere and lower stratosphere--the former helping to transport CO from the lower to the middle troposphere (or even higher), and the dynamical uplift and isolation effects of the latter helping to build up highly concentrated CO in the upper troposphere and lower stratosphere (UTLS). Similarly, there are two annual surface emission peaks in- duced by biomass burning emissions: one from the North- ern Hemisphere and the other from the Southern Hemi- sphere. Both contribute to the highly concentrated CO mixing ratio and control the seasonal variabilities of CO in the UTLS, combining the effects of deep convections and monsoons. Results also show a relatively steady emission rate from anthropogenic sources, with a small increase mainly coming from Southeast Asia and lndia. These emis- sions can be transported to the UTLS over Tibet by the joint effort of surface horizontal winds, deep convections, and the Asian summer monsoon system.展开更多
In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and season...In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.展开更多
基金The National High Technology Research and Development Program of China(863Program)(No.705201)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,StateEducation Ministry
文摘Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research.
基金supported by the National Basic Research Program of China (Grant No.2010CB428602)the National Natural Science Foundation of China (Grant Nos.41005023 and 41275046)
文摘The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure- ments of pollution in the troposphere (MOPITT) and mod- em-era retrospective analysis for research and applications (MERRA) meteorological products, and atmospheric chemistry and climate model intercomparison project (ACCMIP) surface emission inventories, the influences of atmospheric dynamics and surface emissions are investi- gated. The results show that there are four centers of highly concentrated CO mixing ratio over tropical areas in differ- ent seasons: two in the Northern Hemisphere and another two in the Southern Hemisphere. All of these centers cor- respond to local deep convective systems and mon- soons/anticyclones. The authors suggest that both deep convections and anticyclones affect CO in the tropical tro- posphere and lower stratosphere--the former helping to transport CO from the lower to the middle troposphere (or even higher), and the dynamical uplift and isolation effects of the latter helping to build up highly concentrated CO in the upper troposphere and lower stratosphere (UTLS). Similarly, there are two annual surface emission peaks in- duced by biomass burning emissions: one from the North- ern Hemisphere and the other from the Southern Hemi- sphere. Both contribute to the highly concentrated CO mixing ratio and control the seasonal variabilities of CO in the UTLS, combining the effects of deep convections and monsoons. Results also show a relatively steady emission rate from anthropogenic sources, with a small increase mainly coming from Southeast Asia and lndia. These emis- sions can be transported to the UTLS over Tibet by the joint effort of surface horizontal winds, deep convections, and the Asian summer monsoon system.
文摘In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.