Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1)chemicals requires the cleavage of robust C−C bonds in sugars wit...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1)chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1)chemicals),and H_(2)on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1)chemicals and H_(2)with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slu...[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slurry.[Method] Using secondary aerobic fermentation technology,a small amount of humic acid was added to biogas slurry to enhance the biological activity of biogas slurry.Through greenhouse experiment,the effect of highly efficient nutrient solution of biogas slurry on yield and quality of green pepper,tomato and cucumber was studied.[Result] Compared with control and traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry increased the yield of green pepper,tomato and cucumber,and the increase extents were 12.4%,47.4%,19.9% and 2.7%,15.9%,9.1%,respectively.Compared with traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry significantly increased Vc content of green pepper and cucumber with the increase extent of 16.8% and 43.8%,respectively.[Conclusion] Application of highly efficient nutrient solution of biogas slurry can effectively promote the yield of green pepper,tomato and cucumber and change the qualities of vegetables,and significantly enhance the biological activity of biogas slurry.展开更多
A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Bra...A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.展开更多
[Objective] The aim was to improve the quality of the duck blood tofu by ultrasonic technology. [Method] Ultrasonic technology was used to break the blood cell membrane. The optimal ultrasonic condition was determined...[Objective] The aim was to improve the quality of the duck blood tofu by ultrasonic technology. [Method] Ultrasonic technology was used to break the blood cell membrane. The optimal ultrasonic condition was determined by single factor de- sign, and the differences in sensory quality and nutritional value between the duck blood tofu treated with and without ultrasonication were studied. [Result] The optimal ultrasonic power was 400 W and the optimal ultrasonic time was 6 min. Under these conditions, the content of duck blood haemoglobin increased by 43.46%, the content of iron increased by 10.85%, and the breakage rate was 100%. The a* value of the duck blood tofu increased significantly under ultrasonic treatment. Both internal micro-structure and texture parameters proved that the ultrasonic contributed to the formation of gel structure. After treatment by artificial gastric juice and artifi- cial intestinal juice, the total amino acids in the digestive juice were 9.25% higher than that of the duck blood tofu without ultrasonic treatment. [Conclusion] The duck blood tofu under ultrasonic treatment would be beneficial to human body absorption, and the nutrition value would be higher as well.展开更多
Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the pheno...Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the phenotypic values and potential QTLs for the quality traits. The cooking and nutrient quality traits, including the amylose content (AC), the gel consistency (CJC), the gelatinization temperature (GT), and the protein content (PC), in rice grown under upland and lowland environments were evaluated. Significant differences for AC, GC, GT, and PC between upland and lowland environments were detected. The phenotypic values of all four traits were higher under upland environment than lowland environment. The value of PC under upland environment was significantly higher (by 37.9%) than that under lowland environment. This suggests that upland cultivation had large effect on both cooking and nutrient qualifies. A total of seven QTLs and twelve pairs of QTLs were detected to have significant additive and epistatic effects for the four traits. Significant Q x E interaction effects of two QTLs and two pairs of QTLs were also discovered. The general contribution of additive QTLs ranged from 1.91% to 19.77%. The Q × E interactions of QTLs QGt3 and QAc6 accounted for 8.99% and 47.86% of the phenotypic variation, respectively, whereas those of the 2 pairs of epistatic QTLs, QAc6-QAcllb and QAc8-QAc9, accounted for 32.54% and 11.82%, respectively. Five QTLs QGt6b, QGt8, QGt11, QGcl, and QPc2, which had relatively high general contribution and no Q x E interactions, were selected to facilitate the upland rice grain quality breeding.展开更多
[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japo...[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japonica rice varieties with high quality in the Yunnan plateau.[Method] Four cold-tolerant and five cold-sensitive japonica rice cultivars were grown at three locations with different altitudes in Yunnan plateau to investigate rice starch RVA profile characteristics.[Result] The results showed that with increasing altitude,the setback viscosity in cold-sensitive cultivars increased significantly,while the peak viscosity and breakdown viscosity decreased significantly.However,the peak viscosity and breakdown viscosity in cold-tolerant cultivars initially decreased and then gradually increased with rising altitude,whereas the setback viscosity initially increased and then decreased.[Conclusion] The starch RVA parameters of cold-tolerant cultivars were less sensitive to different environments than those of cold-sensitive cultivars.Cooking and eating quality of cold-tolerant cultivars had relatively stable trends with rising altitude,whereas cooking and eating quality of cold-sensitive cultivars had a trend toward inferior.展开更多
Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) +...Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.展开更多
[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were anal...[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were analyzed for single plant lint yield and 10 agronomic traits in a randomized, complete block at the agriculture experimental station of JXAU, Nanchang, China in 2007. They were divided into three types ( high, medium, low yield) based on single plant lint yield by Ward's method. A total of 11 traits of three types were compared. Correlation a- nalysis and stepwise regression analysis of 10 agronomic traits to single plant lint yield were carried out. [ Result] There existed statistically sig- nificant difference in bolls per plant, ~int percentage, lint index, fruit node numbers, growth period for three yield types. The high yield type ex- hibited the highest bolls per plant, lint percentage and lint index, the lowest fruit node numbers and the shortest growth period. Bolls per plant, boll weight and single plant lint yield were significantly and positively correlated. Fruit node numbers and single plant lint yield were significantly and negatively correlated. Bolls per plant, boll weight, and fruiting position number were the most important factors influencing single plant lint yield of upland cotton lines with high quality. [ Conclusion ] The results will have certain significance for the development of upland cotton variety with high quality.展开更多
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1)chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1)chemicals),and H_(2)on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1)chemicals and H_(2)with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金Supported by"Eleventh Five-Year"National Technology Support Program(2008BADC4B17)~~
文摘[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slurry.[Method] Using secondary aerobic fermentation technology,a small amount of humic acid was added to biogas slurry to enhance the biological activity of biogas slurry.Through greenhouse experiment,the effect of highly efficient nutrient solution of biogas slurry on yield and quality of green pepper,tomato and cucumber was studied.[Result] Compared with control and traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry increased the yield of green pepper,tomato and cucumber,and the increase extents were 12.4%,47.4%,19.9% and 2.7%,15.9%,9.1%,respectively.Compared with traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry significantly increased Vc content of green pepper and cucumber with the increase extent of 16.8% and 43.8%,respectively.[Conclusion] Application of highly efficient nutrient solution of biogas slurry can effectively promote the yield of green pepper,tomato and cucumber and change the qualities of vegetables,and significantly enhance the biological activity of biogas slurry.
基金Supported by National Scientific and Technological Supporting Project(2008BADA4B04-09)Guangdong Province Scientific and Technological Project(2008A020100017)Guangdong Province Department of Finance Project[(2006)143]~~
文摘A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.
基金Supported by National Agricultural Scientific and Technological Achievements Transformation Program of China(2012GB2C100165)~~
文摘[Objective] The aim was to improve the quality of the duck blood tofu by ultrasonic technology. [Method] Ultrasonic technology was used to break the blood cell membrane. The optimal ultrasonic condition was determined by single factor de- sign, and the differences in sensory quality and nutritional value between the duck blood tofu treated with and without ultrasonication were studied. [Result] The optimal ultrasonic power was 400 W and the optimal ultrasonic time was 6 min. Under these conditions, the content of duck blood haemoglobin increased by 43.46%, the content of iron increased by 10.85%, and the breakage rate was 100%. The a* value of the duck blood tofu increased significantly under ultrasonic treatment. Both internal micro-structure and texture parameters proved that the ultrasonic contributed to the formation of gel structure. After treatment by artificial gastric juice and artifi- cial intestinal juice, the total amino acids in the digestive juice were 9.25% higher than that of the duck blood tofu without ultrasonic treatment. [Conclusion] The duck blood tofu under ultrasonic treatment would be beneficial to human body absorption, and the nutrition value would be higher as well.
基金This work was supported by the State Key Basic Research and Development Plan of China (973)the Hi-Tech Research and De-velopment Program of China (863) National Natural Science Foundation of China.
文摘Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the phenotypic values and potential QTLs for the quality traits. The cooking and nutrient quality traits, including the amylose content (AC), the gel consistency (CJC), the gelatinization temperature (GT), and the protein content (PC), in rice grown under upland and lowland environments were evaluated. Significant differences for AC, GC, GT, and PC between upland and lowland environments were detected. The phenotypic values of all four traits were higher under upland environment than lowland environment. The value of PC under upland environment was significantly higher (by 37.9%) than that under lowland environment. This suggests that upland cultivation had large effect on both cooking and nutrient qualifies. A total of seven QTLs and twelve pairs of QTLs were detected to have significant additive and epistatic effects for the four traits. Significant Q x E interaction effects of two QTLs and two pairs of QTLs were also discovered. The general contribution of additive QTLs ranged from 1.91% to 19.77%. The Q × E interactions of QTLs QGt3 and QAc6 accounted for 8.99% and 47.86% of the phenotypic variation, respectively, whereas those of the 2 pairs of epistatic QTLs, QAc6-QAcllb and QAc8-QAc9, accounted for 32.54% and 11.82%, respectively. Five QTLs QGt6b, QGt8, QGt11, QGcl, and QPc2, which had relatively high general contribution and no Q x E interactions, were selected to facilitate the upland rice grain quality breeding.
基金Supported the Key Technologies R&D Program of Yunnan(2010BB002)the National High-tech R & D Program of China(2010AA10Z104 )+2 种基金International Cooperation Programs betweenChina and Korea (YK 2007-2010)Young and Middle-aged Academic Technology Leader Backup Talents Project (2009CI058 )Training Programme for Young and Middle-aged Talents of Technology Innovation by Yunnan (2008PY089)~~
文摘[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japonica rice varieties with high quality in the Yunnan plateau.[Method] Four cold-tolerant and five cold-sensitive japonica rice cultivars were grown at three locations with different altitudes in Yunnan plateau to investigate rice starch RVA profile characteristics.[Result] The results showed that with increasing altitude,the setback viscosity in cold-sensitive cultivars increased significantly,while the peak viscosity and breakdown viscosity decreased significantly.However,the peak viscosity and breakdown viscosity in cold-tolerant cultivars initially decreased and then gradually increased with rising altitude,whereas the setback viscosity initially increased and then decreased.[Conclusion] The starch RVA parameters of cold-tolerant cultivars were less sensitive to different environments than those of cold-sensitive cultivars.Cooking and eating quality of cold-tolerant cultivars had relatively stable trends with rising altitude,whereas cooking and eating quality of cold-sensitive cultivars had a trend toward inferior.
文摘Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.
文摘[ Objective] The purpose was to study the correlation between main agronomic traits and single plant lint yield in upland cotton with high quality. [ Method] Twenty-four upland cotton lines with high quality were analyzed for single plant lint yield and 10 agronomic traits in a randomized, complete block at the agriculture experimental station of JXAU, Nanchang, China in 2007. They were divided into three types ( high, medium, low yield) based on single plant lint yield by Ward's method. A total of 11 traits of three types were compared. Correlation a- nalysis and stepwise regression analysis of 10 agronomic traits to single plant lint yield were carried out. [ Result] There existed statistically sig- nificant difference in bolls per plant, ~int percentage, lint index, fruit node numbers, growth period for three yield types. The high yield type ex- hibited the highest bolls per plant, lint percentage and lint index, the lowest fruit node numbers and the shortest growth period. Bolls per plant, boll weight and single plant lint yield were significantly and positively correlated. Fruit node numbers and single plant lint yield were significantly and negatively correlated. Bolls per plant, boll weight, and fruiting position number were the most important factors influencing single plant lint yield of upland cotton lines with high quality. [ Conclusion ] The results will have certain significance for the development of upland cotton variety with high quality.