An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or p...An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.展开更多
Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from de...Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature.Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitrification and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitrification was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.展开更多
This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated ...This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.展开更多
Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analy...Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground (10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil (33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil (100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids (PLFAs), carbon (C) and nitrogen (N) contents and the isotope ratios of C (δ13C) and N (δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiezii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA comoosition was related to the successional ages and the developing soil properties (P 〈 0.05, ANOSIM). The chrono- sequential analysis effectively detected the successional changes in both microbial and plant communities.展开更多
Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption o...Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.展开更多
Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applica...Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.展开更多
Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very ...Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very little literature is available to support either modelling or occurrence prediction for this phenomenon. In this study, an unsteady physical model of fire spread is detailed, which describes the initiation and development of eruptive fires with an induced wind sub-model. The latter phenomenon is proposed as the mainspring of fire eruptions. Induced wind is proportional to the rate of spread and the rate of spread is in a non-linear relationship with induced wind. This feedback can converge or diverge depending on the conditions. The model allows both explaining why an eruption can occur and predicting explicitly its occurrence according to meteorological conditions, topographic parameters, fuel bed properties and fire front width. The model is tested by comparing its results to a set of experiments carried out at laboratory scale and during an outdoor wildfire, the Kornati accident.展开更多
[Objective] This study aimed to investigate the effects of different irrigation modes on chemical constituent and aroma substance contents and sensory quality in flue-cured tobacco leaves. [Method] Field experiments w...[Objective] This study aimed to investigate the effects of different irrigation modes on chemical constituent and aroma substance contents and sensory quality in flue-cured tobacco leaves. [Method] Field experiments were conduced with two treatments, including watering irrigation and micro-spraying irrigation. In watering irrigation treatment, flue-cured tobacco seedlings were respectively watered by artificial root irrigation once at rosette stage(May 26) and vigorous growth stage(June 18), 1kg/plant each time; in micro-spraying treatment, flue-cured tobacco seedlings were watered by artificial root irrigation once at rosette stage(May 26), 1 L/plant. [Result]Compared to watering irrigation mode, micro-spraying irrigation could extremely significantly increase the content of main aromatic substance in middle and upper leaves.Contents of main aromatic substance non-volatile organic acids, volatile organic acids, petroleum ether extracts, neophytadiene and neutral aromatic substances in C3F tobacco leaves were improved by 24.4%, 32.6%, 20.7%, 33.8% and 26.3%, respectively; contents of main aromatic substance non-volatile organic acids, volatile organic acids, petroleum ether extracts, eophytadiene and neutral aromatic substances in B2F tobacco leaves were improved by 16.3%, 6.0%, 6.1%, 10.8% and8.1%, respectively. In addition, micro-spraying irrigation could extremely significantly reduce the nicotine content in middle and upper leaves and improve the aromatic coordination, mellow taste and smoldering property. [Conclusion] In flue-cured tobacco production, micro-spraying technology is an important means to improve the internal quality of flue-cured tobacco leaves, which can be adopted to effectively solve the problem of declining quality of flue-cured tobacco leaves resulted from the dry climate at maturation stage in seasonal frequent-drought areas.展开更多
Flow visualization and hot-wire measurement techniques were combined to investigate the influence of the size and number of tabs on jet flow field and vortex structure generation mechanism. Streamwise vortices generat...Flow visualization and hot-wire measurement techniques were combined to investigate the influence of the size and number of tabs on jet flow field and vortex structure generation mechanism. Streamwise vortices generated by the tabs of different sizes and numbers were observed from the flow visualization images. Combined with flow visualization, hot-wire measurement gave a quantitative insight of the effect of various tabbed jet flows. Instantaneous two-component velocity signals (longitudinal and transverse velocity components) at different cross sections along radius direction and streamwise direction with different tabbed jet nozzles were measured using hot-wire anemometer. Average flow field parameters of tabbed jet flow such as mean velocity, tur-bulence intensity, vorticity were analyzed and the effects of tabs with different sizes and numbers were compared with that of circular no-tab jet flow. It is revealed that the generation of a series of counter-rotating quasi-streamwise vortices, azimuthal vortices and double-row azi-muthal vortex are the reasons for mixing enhancement of tabbed turbulent jet flow.展开更多
Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around...Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.展开更多
Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TV...Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.展开更多
In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in...In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in nozzle hole, jet atomization, droplet second breakup and spray wall interaction. Otherwise, a reduced DME reaction mechanism is implemented in the combustion model, and a new turbulent combustion model?Partial Stirred Reactor (PaSR) model is selected to simulate the spray combustion process, the effects of turbulent mixing on the reaction rate are considered. The results of engine modeling based on those models agreed well with the experimental measurements. Study of temperature fields variation and particle traces in the combustion chamber revealed that the engine combustion system originally used for diesel fuel must be optimized for DME.展开更多
A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is use...A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.展开更多
Geohazards appear to be increasing in frequency globally. It is of necessity to actively manage these natural hazards to minimize loss of life and property. From an early warning perspective, this paper stresses the p...Geohazards appear to be increasing in frequency globally. It is of necessity to actively manage these natural hazards to minimize loss of life and property. From an early warning perspective, this paper stresses the potential fatal flood hazard represented by the huge volume of water in Tianchi Lake, the unique geography of Changbai Mountain, and the limited flood control ability in the upstream of the Songhua River. Northeast Asian countries should keep a watchful eye on the Changbai volcano cooperatively, and Chinese government especially needs to prepare plans for fighting a flood in advance.展开更多
Recent eruption of Unzen Volcano in 1991-1995 caught attention of scientists all over the world because of disastrous character of previous one in 1792. Intrusion of andesitic magma to the chamber with rhyolitic magma...Recent eruption of Unzen Volcano in 1991-1995 caught attention of scientists all over the world because of disastrous character of previous one in 1792. Intrusion of andesitic magma to the chamber with rhyolitic magma is proposed to be a trigger for these eruptions. T-P-X parameters of two end-member magmas have been estimated several times, but usually estimations are based on phenocrysts assemblages. New results of this research are based on mafic enclaves and groundmass. These results are significant for magma mixing and mingling theory.展开更多
In the jet engine, icing phenomena occur primarily on the fan blades, the FEGVs (fan exit guide vanes), the splitter, and the low-pressure compressor. Accreted ice disturbs the inlet flow and causes large energy los...In the jet engine, icing phenomena occur primarily on the fan blades, the FEGVs (fan exit guide vanes), the splitter, and the low-pressure compressor. Accreted ice disturbs the inlet flow and causes large energy losses. In addition, ice accreted on a fan rotor can be shed from the blade surface due to centrifugal force and can damage compressor components. This phenomenon, which is typical in turbomachinery, is referred to as ice shedding. Although existing icing models can simulate ice growth, these models do not have the capability to reproduce ice shedding. In the present study, we develop an icing model that takes into account both ice growth and ice shedding. Furthermore, we have validated the proposed ice shedding model through the comparison of numerical results and experimental data, which include the flow rate loss due to ice growth and the flow rate recovery due to ice shedding. The simulation results for the time at which ice shedding occurred and what were obtained using the proposed ice shedding model were in good agreement with the experimental results.展开更多
The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimensio...The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.展开更多
This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful me...This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.展开更多
The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol an...The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.展开更多
文摘An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-413-3)the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Australian Centre for
文摘Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature.Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitrification and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitrification was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.
文摘This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.
文摘Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground (10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil (33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil (100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids (PLFAs), carbon (C) and nitrogen (N) contents and the isotope ratios of C (δ13C) and N (δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiezii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA comoosition was related to the successional ages and the developing soil properties (P 〈 0.05, ANOSIM). The chrono- sequential analysis effectively detected the successional changes in both microbial and plant communities.
文摘Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.
文摘Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.
文摘Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very little literature is available to support either modelling or occurrence prediction for this phenomenon. In this study, an unsteady physical model of fire spread is detailed, which describes the initiation and development of eruptive fires with an induced wind sub-model. The latter phenomenon is proposed as the mainspring of fire eruptions. Induced wind is proportional to the rate of spread and the rate of spread is in a non-linear relationship with induced wind. This feedback can converge or diverge depending on the conditions. The model allows both explaining why an eruption can occur and predicting explicitly its occurrence according to meteorological conditions, topographic parameters, fuel bed properties and fire front width. The model is tested by comparing its results to a set of experiments carried out at laboratory scale and during an outdoor wildfire, the Kornati accident.
基金Supported by Science and Technology Project of Yunnan Zhongyan Industry Co.,Ltd.(2010YL01-2)Science and Technology Project of Hongyun Honghe Tobacco(Group) Co.Ltd.(HYHH2012YL01)~~
文摘[Objective] This study aimed to investigate the effects of different irrigation modes on chemical constituent and aroma substance contents and sensory quality in flue-cured tobacco leaves. [Method] Field experiments were conduced with two treatments, including watering irrigation and micro-spraying irrigation. In watering irrigation treatment, flue-cured tobacco seedlings were respectively watered by artificial root irrigation once at rosette stage(May 26) and vigorous growth stage(June 18), 1kg/plant each time; in micro-spraying treatment, flue-cured tobacco seedlings were watered by artificial root irrigation once at rosette stage(May 26), 1 L/plant. [Result]Compared to watering irrigation mode, micro-spraying irrigation could extremely significantly increase the content of main aromatic substance in middle and upper leaves.Contents of main aromatic substance non-volatile organic acids, volatile organic acids, petroleum ether extracts, neophytadiene and neutral aromatic substances in C3F tobacco leaves were improved by 24.4%, 32.6%, 20.7%, 33.8% and 26.3%, respectively; contents of main aromatic substance non-volatile organic acids, volatile organic acids, petroleum ether extracts, eophytadiene and neutral aromatic substances in B2F tobacco leaves were improved by 16.3%, 6.0%, 6.1%, 10.8% and8.1%, respectively. In addition, micro-spraying irrigation could extremely significantly reduce the nicotine content in middle and upper leaves and improve the aromatic coordination, mellow taste and smoldering property. [Conclusion] In flue-cured tobacco production, micro-spraying technology is an important means to improve the internal quality of flue-cured tobacco leaves, which can be adopted to effectively solve the problem of declining quality of flue-cured tobacco leaves resulted from the dry climate at maturation stage in seasonal frequent-drought areas.
基金National Natural Science Foundation of China (No.10472081)Program for New Century Excellent Talents in Universities of Minis-try of Education of China and Plan of Tianjin Science and Technology Development (No.06TXTJJC13800)
文摘Flow visualization and hot-wire measurement techniques were combined to investigate the influence of the size and number of tabs on jet flow field and vortex structure generation mechanism. Streamwise vortices generated by the tabs of different sizes and numbers were observed from the flow visualization images. Combined with flow visualization, hot-wire measurement gave a quantitative insight of the effect of various tabbed jet flows. Instantaneous two-component velocity signals (longitudinal and transverse velocity components) at different cross sections along radius direction and streamwise direction with different tabbed jet nozzles were measured using hot-wire anemometer. Average flow field parameters of tabbed jet flow such as mean velocity, tur-bulence intensity, vorticity were analyzed and the effects of tabs with different sizes and numbers were compared with that of circular no-tab jet flow. It is revealed that the generation of a series of counter-rotating quasi-streamwise vortices, azimuthal vortices and double-row azi-muthal vortex are the reasons for mixing enhancement of tabbed turbulent jet flow.
文摘Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.
文摘Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory(TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.
基金Project supported by the National Basic Research Program (973)of China(No. 2001CB209207)and the National Natural Science Foundation of China (No. 50376018)
文摘In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in nozzle hole, jet atomization, droplet second breakup and spray wall interaction. Otherwise, a reduced DME reaction mechanism is implemented in the combustion model, and a new turbulent combustion model?Partial Stirred Reactor (PaSR) model is selected to simulate the spray combustion process, the effects of turbulent mixing on the reaction rate are considered. The results of engine modeling based on those models agreed well with the experimental measurements. Study of temperature fields variation and particle traces in the combustion chamber revealed that the engine combustion system originally used for diesel fuel must be optimized for DME.
基金Supported by the National High Technology Research and Development Program("863"Program)of China(2009AA063102,2007AA061202)
文摘A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-EW-319)the National Basic Research Program of China (Grant No. 2010CB951301)the National Natural Science Foundation of China (Grant No. 40871089)
文摘Geohazards appear to be increasing in frequency globally. It is of necessity to actively manage these natural hazards to minimize loss of life and property. From an early warning perspective, this paper stresses the potential fatal flood hazard represented by the huge volume of water in Tianchi Lake, the unique geography of Changbai Mountain, and the limited flood control ability in the upstream of the Songhua River. Northeast Asian countries should keep a watchful eye on the Changbai volcano cooperatively, and Chinese government especially needs to prepare plans for fighting a flood in advance.
文摘Recent eruption of Unzen Volcano in 1991-1995 caught attention of scientists all over the world because of disastrous character of previous one in 1792. Intrusion of andesitic magma to the chamber with rhyolitic magma is proposed to be a trigger for these eruptions. T-P-X parameters of two end-member magmas have been estimated several times, but usually estimations are based on phenocrysts assemblages. New results of this research are based on mafic enclaves and groundmass. These results are significant for magma mixing and mingling theory.
文摘In the jet engine, icing phenomena occur primarily on the fan blades, the FEGVs (fan exit guide vanes), the splitter, and the low-pressure compressor. Accreted ice disturbs the inlet flow and causes large energy losses. In addition, ice accreted on a fan rotor can be shed from the blade surface due to centrifugal force and can damage compressor components. This phenomenon, which is typical in turbomachinery, is referred to as ice shedding. Although existing icing models can simulate ice growth, these models do not have the capability to reproduce ice shedding. In the present study, we develop an icing model that takes into account both ice growth and ice shedding. Furthermore, we have validated the proposed ice shedding model through the comparison of numerical results and experimental data, which include the flow rate loss due to ice growth and the flow rate recovery due to ice shedding. The simulation results for the time at which ice shedding occurred and what were obtained using the proposed ice shedding model were in good agreement with the experimental results.
基金Supported by National Natural Science Foundation of China (No. 50876072) Tianjin Municipal Science and Technology Commission (No. 07JCYBJC03900 )
文摘The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.
文摘This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.
基金supported by the National Key Research and Development Program of China[grant number 2016YFA0600704]the National Natural Science Foundation of China[grant number Y71301U801]
文摘The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way.