Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer...Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.展开更多
Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
Chemoselective hydrogenation of unsaturated aldehyde to unsaturated alcohol has attracted growing interests in recent years due to its widespread applications in fine chemicals.However,the hydrogenation of the C=O bon...Chemoselective hydrogenation of unsaturated aldehyde to unsaturated alcohol has attracted growing interests in recent years due to its widespread applications in fine chemicals.However,the hydrogenation of the C=O bond was thermodynamically and kinetically unfavorable over the hydrogenation of the C=C bond.Thus,to obtain the unsaturated alcohol from the unsaturated aldehyde is very difficult in most of the catalytic systems.In this work,ZnAl-hydrotalcite-supported cysteine-capped Au25 nanoclusters were used as the precatalysts for chemoselective hydrogenation of cinnamaldehyde to cinnamyl alcohol.The catalyst showed stable high selectivity(~95%)at prolonged reaction time and complete conversion of the substrate.According to the results of the control experiments,the in-situ DRIFTS of the substrate under high pressure of hydrogen and the 27Al MAS-NMR spectroscopy,we proposed that the difference of the preferential adsorption of the C=O bond to that of the C=C bond was derived from the nature of the support of the gold catalysts.展开更多
Atomically precise gold nanoclusters have recently attracted intensive attention due to their significance in catalysis,chemical sensing,and bio-application.These nanoclusters often possess unique optical,chemical or ...Atomically precise gold nanoclusters have recently attracted intensive attention due to their significance in catalysis,chemical sensing,and bio-application.These nanoclusters often possess unique optical,chemical or physical properties originated from the quantum size effect(i.e.size andshapemorphology).展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1500500,2019-YFA0405600)the CAS Project for Young Scientists in Basic Research(YSBR-051)+6 种基金the National Science Fund for Distinguished Young Scholars(21925204)the National Natural Science Foundation of China(22202192,U19A2015,22221003,22250007,22163002)the Collaborative Innovation Program of Hefei Science Center,CAS(2022HSCCIP004)the International Partnership,the DNL Cooperation Fund,CAS(DNL202003)the USTC Research Funds of the Double First-Class Initiative(YD9990002016,YD999000-2014)the Program of Chinese Academy of Sciences(123GJHZ2022101GC)the Fundamental Research Funds for the Central Universities(WK9990000095,WK999000-0124).
文摘Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.
文摘Chemoselective hydrogenation of unsaturated aldehyde to unsaturated alcohol has attracted growing interests in recent years due to its widespread applications in fine chemicals.However,the hydrogenation of the C=O bond was thermodynamically and kinetically unfavorable over the hydrogenation of the C=C bond.Thus,to obtain the unsaturated alcohol from the unsaturated aldehyde is very difficult in most of the catalytic systems.In this work,ZnAl-hydrotalcite-supported cysteine-capped Au25 nanoclusters were used as the precatalysts for chemoselective hydrogenation of cinnamaldehyde to cinnamyl alcohol.The catalyst showed stable high selectivity(~95%)at prolonged reaction time and complete conversion of the substrate.According to the results of the control experiments,the in-situ DRIFTS of the substrate under high pressure of hydrogen and the 27Al MAS-NMR spectroscopy,we proposed that the difference of the preferential adsorption of the C=O bond to that of the C=C bond was derived from the nature of the support of the gold catalysts.
文摘Atomically precise gold nanoclusters have recently attracted intensive attention due to their significance in catalysis,chemical sensing,and bio-application.These nanoclusters often possess unique optical,chemical or physical properties originated from the quantum size effect(i.e.size andshapemorphology).