To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for ...To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.展开更多
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o...The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar ...This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.展开更多
Western Liaoning Province is characterized by huge areas of lowly-efficient Chinese pine (Pinus tabulaeformis Carr.) pure plantations. How to transform these plantations has become an increasingly significant manageme...Western Liaoning Province is characterized by huge areas of lowly-efficient Chinese pine (Pinus tabulaeformis Carr.) pure plantations. How to transform these plantations has become an increasingly significant management problem. In this study, the authors summarized the approaches, which are based on close-to-nature silvicultural system, to transform the pure pine plantations. Native broadleaved trees were planted in three methods: 1) after strip clearcutting, 2) after patch clearcutting; 3) on the open forestland and the forest edge. The transformation targets and the selection of tree species were expatiated in this paper. The key techniques and their application conditions for each method were analyzed and discussed. Through investigation and contrastive analysis, the assessment was made to the stands transformed by strip method. Results showed that the mixed stands at 16 years after transformation had an obvious layered structure and the species richness of understorey vegetation increased by 23.5%–52.9%. Soil enzyme activities of urease, phosphatase and sucrase increased by 6%–142%, 46%–99% and 31%–200%, respetively. Moreover, the transformed stands could effectively control the occurrence of pine caterpillars in plantations. Consequently the transformations enhanced the function of soil and water conservation. Keywords Pinus tabulaeformis - Monoculture - Transformation - Principles and methods - Assessment CLC number S791.254 - S727.22 Document code A Foundation item: This research was supported by grants from the Chinese Academy of Sciences (KZCX3-SW-418), National Natural Science Foundation of China (30100144), and National Key Technologies R & D Program of China (96-007-01-06).Biography: ZENG De-hui (1965-), male, Ph.D. professor in the Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Zhu Hong展开更多
[Objective] The aim of this study was to evaluate the effects of soil amend- ment composed of biochar and inorganic mineral material on growth and develop- ment, yield and output value of flue-cured tobacco in South A...[Objective] The aim of this study was to evaluate the effects of soil amend- ment composed of biochar and inorganic mineral material on growth and develop- ment, yield and output value of flue-cured tobacco in South Anhui Province. [Method] A field plot experiment was conducted. The agronomic traits, yield and output value, as well as appearance quality and flavor of flue-cured tobacco were evaluated. [Re- suit] The soil amendments composed of biochars and inorganic mineral materials could significantly increase plant height, stem diameter, leaf size, yield and output of flue-cured tobacco, as well as proportion of first-grade tobacco leaves at the middle and late growth period. The yield in the X3 treatment group (70% T20 + 30% ZC) was highest, and it was higher than that in the control group by 398 kg/hm2. Com- pared with that in the control group, the output of flue-cured tobacco in the X3 treatment group was increased by 10 290 yuan/hm2. In terms of appearance quality and flavor, the flue-cured tobacco leaves in the soil amendment treatment groups were all better than those in the control group. [Conclusion] The application of soil amendment composed of biochar and inorganic mineral material is an effective mea- sure to improve tobacco-growing soil, promote tobacco growth and development, im- prove tobacco yield and output and improve tobacco leaf quality in South Anhui re- gion.展开更多
As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent ...As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
Rammed earth wall technique is one of the local widespread traditional construction methods, and it has superior physical property and ecological protection characteristic. When contemporary raw-soil building is repla...Rammed earth wall technique is one of the local widespread traditional construction methods, and it has superior physical property and ecological protection characteristic. When contemporary raw-soil building is replaced by industry building, the hometown building culture is perishing gradually. In order to inherit and develop the Hanzhong local building, rammed earth wall in Taiyangling and Cangshe hometown is investigated, and the characteristics and construction techniques of the local rammed earth wall are concluded. According to the construction problems, the improvement suggestions are put forward, which establishes the foundation to investigate rammed earth wall further, and guide Rural House construction.展开更多
Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativ...Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativus L.) planted in two levels (CdCl2·2.5H2O mg/kg and 4 mg/kg) of Cd-contaminated soil in which different concentrations of complex amendments (0, 600, 900, 1 200 mg/kg) were added. The results showed that when applying 1 200 mg/kg amendment, the organic mat-ter content, bacterial number and total microorganism amounts in 2 and 4 mg/kg Cd-contaminated soil increased by 23.17% and 32.89%, 87.61% and 96.02%, 59.95% and 55.81%, respectively. When 900 mg/kg amendment was applied, the fungi number in 2 and 4 mg/kg Cd-contaminated soil reached the maximum, in-creasing by 137.50% and 106.72% respectively. However, applying the amendment had no significant effect on the pH of soil. The security and nutritional quality of cu-cumber fruits were obviously improved comparing with control. The Cd content in cucumber fruits decreased by 31.40% and 24.35%, respectively, in 2 and 4 mg/kg Cd-contaminated soil. Furthermore, Vc, soluble sugar and soluble fixation content in cucumber fruits of 2 and 4 mg/kg Cd-contaminated soil went up by 25.00% and 91.42%, 37.03% and 27.06%, 14.29% and 58.80%, respectively. lt was indicated that the complex amendment can obviously improve the quality of cucumber fruit and thus can be used in the in situ_repair of Cd-contaminated soil.展开更多
SoiI in Africa is one of the most infertiIe soiIs on the earth. With soiIs in Burundi as study objects, the soiI-forming conditions, the properties of basic soiI types, and soiI improvement were discussed, which provi...SoiI in Africa is one of the most infertiIe soiIs on the earth. With soiIs in Burundi as study objects, the soiI-forming conditions, the properties of basic soiI types, and soiI improvement were discussed, which provides a reference for the decision maker and the rational deveIopment and utiIization of soiI in Burundi.展开更多
基金National Key Research and Development Program of China(No.2022YFC3004300)the National Natural Science Foundation of China(No.52378475).
文摘To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.
基金Project (2012BAC09B04) supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of ChinaProject (2010-277-027) supported by Science and Technology Foundation of Environmental Protection in Hunan Province,ChinaProject (2011SK3262) supported by Science and Technology Planning of Hunan Province,China
文摘The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金Supported by Scientific and Technological Development Project of Tobacco Industry in Helongjiang Province(HYK[2015]59)~~
文摘This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.
基金This research was supported by grants from the Chinese Academy of Sciences (KZCX3-SW-418) National Natural Science Founda-tion of China (30100144)and National Key Technologies R & D
文摘Western Liaoning Province is characterized by huge areas of lowly-efficient Chinese pine (Pinus tabulaeformis Carr.) pure plantations. How to transform these plantations has become an increasingly significant management problem. In this study, the authors summarized the approaches, which are based on close-to-nature silvicultural system, to transform the pure pine plantations. Native broadleaved trees were planted in three methods: 1) after strip clearcutting, 2) after patch clearcutting; 3) on the open forestland and the forest edge. The transformation targets and the selection of tree species were expatiated in this paper. The key techniques and their application conditions for each method were analyzed and discussed. Through investigation and contrastive analysis, the assessment was made to the stands transformed by strip method. Results showed that the mixed stands at 16 years after transformation had an obvious layered structure and the species richness of understorey vegetation increased by 23.5%–52.9%. Soil enzyme activities of urease, phosphatase and sucrase increased by 6%–142%, 46%–99% and 31%–200%, respetively. Moreover, the transformed stands could effectively control the occurrence of pine caterpillars in plantations. Consequently the transformations enhanced the function of soil and water conservation. Keywords Pinus tabulaeformis - Monoculture - Transformation - Principles and methods - Assessment CLC number S791.254 - S727.22 Document code A Foundation item: This research was supported by grants from the Chinese Academy of Sciences (KZCX3-SW-418), National Natural Science Foundation of China (30100144), and National Key Technologies R & D Program of China (96-007-01-06).Biography: ZENG De-hui (1965-), male, Ph.D. professor in the Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Zhu Hong
基金Supported by Special Project for Shanghai and Anhui Modern Tobacco Agricultural High-tech Demonstration Park(CF56.1-ZJ1)~~
文摘[Objective] The aim of this study was to evaluate the effects of soil amend- ment composed of biochar and inorganic mineral material on growth and develop- ment, yield and output value of flue-cured tobacco in South Anhui Province. [Method] A field plot experiment was conducted. The agronomic traits, yield and output value, as well as appearance quality and flavor of flue-cured tobacco were evaluated. [Re- suit] The soil amendments composed of biochars and inorganic mineral materials could significantly increase plant height, stem diameter, leaf size, yield and output of flue-cured tobacco, as well as proportion of first-grade tobacco leaves at the middle and late growth period. The yield in the X3 treatment group (70% T20 + 30% ZC) was highest, and it was higher than that in the control group by 398 kg/hm2. Com- pared with that in the control group, the output of flue-cured tobacco in the X3 treatment group was increased by 10 290 yuan/hm2. In terms of appearance quality and flavor, the flue-cured tobacco leaves in the soil amendment treatment groups were all better than those in the control group. [Conclusion] The application of soil amendment composed of biochar and inorganic mineral material is an effective mea- sure to improve tobacco-growing soil, promote tobacco growth and development, im- prove tobacco yield and output and improve tobacco leaf quality in South Anhui re- gion.
文摘As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金Supported by Fund for Scientific Research of Shaanxi University of Technology(SLG0811)~~
文摘Rammed earth wall technique is one of the local widespread traditional construction methods, and it has superior physical property and ecological protection characteristic. When contemporary raw-soil building is replaced by industry building, the hometown building culture is perishing gradually. In order to inherit and develop the Hanzhong local building, rammed earth wall in Taiyangling and Cangshe hometown is investigated, and the characteristics and construction techniques of the local rammed earth wall are concluded. According to the construction problems, the improvement suggestions are put forward, which establishes the foundation to investigate rammed earth wall further, and guide Rural House construction.
基金Supported by Beijing Municipal Commission of Rural Affairs Science&Technology Program(20120129)Beijing Academy of Agricultural and Forestry Sciences Leafy Vegetable Innovation Team Program(BAIC07-2016)~~
文摘Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativus L.) planted in two levels (CdCl2·2.5H2O mg/kg and 4 mg/kg) of Cd-contaminated soil in which different concentrations of complex amendments (0, 600, 900, 1 200 mg/kg) were added. The results showed that when applying 1 200 mg/kg amendment, the organic mat-ter content, bacterial number and total microorganism amounts in 2 and 4 mg/kg Cd-contaminated soil increased by 23.17% and 32.89%, 87.61% and 96.02%, 59.95% and 55.81%, respectively. When 900 mg/kg amendment was applied, the fungi number in 2 and 4 mg/kg Cd-contaminated soil reached the maximum, in-creasing by 137.50% and 106.72% respectively. However, applying the amendment had no significant effect on the pH of soil. The security and nutritional quality of cu-cumber fruits were obviously improved comparing with control. The Cd content in cucumber fruits decreased by 31.40% and 24.35%, respectively, in 2 and 4 mg/kg Cd-contaminated soil. Furthermore, Vc, soluble sugar and soluble fixation content in cucumber fruits of 2 and 4 mg/kg Cd-contaminated soil went up by 25.00% and 91.42%, 37.03% and 27.06%, 14.29% and 58.80%, respectively. lt was indicated that the complex amendment can obviously improve the quality of cucumber fruit and thus can be used in the in situ_repair of Cd-contaminated soil.
基金Supported by Guangxi S&T Development Planning Program(14125007-2-7)~~
文摘SoiI in Africa is one of the most infertiIe soiIs on the earth. With soiIs in Burundi as study objects, the soiI-forming conditions, the properties of basic soiI types, and soiI improvement were discussed, which provides a reference for the decision maker and the rational deveIopment and utiIization of soiI in Burundi.