A field experiment of 2-year-old gentian (Gentiana manshurica Kitag.) with application of boron (B), zinc (Zn), and iron (Fe) in Taikang County, Heilongjiang Province, was conducted to study the effects of the...A field experiment of 2-year-old gentian (Gentiana manshurica Kitag.) with application of boron (B), zinc (Zn), and iron (Fe) in Taikang County, Heilongjiang Province, was conducted to study the effects of the three microelements on gentiopicroside content in the roots of gentian, uptake of these elements, and root dry weight as well as the ratio of root dry weight to fresh weight. Zinc sulfate, ferrous sulfate, and borax were split sprinkled on 2-year-old gentian on June 26, July 18, and August 25, 2002, with sprinkling water taken as a control. Compared with the control, applying B significantly increased (P 〈 0.05) the gentiopicroside content by 7.9%, and there was a highly significant increase of 22.4% (P 〈 0.01) in the root dry weight. Meanwhile, B content in the shoots of gentian gradually increased from the vegetative to the harvesting period, while Fe decreased at first and then increased. Fc treatment increased the gentiopicroside content only by 4.0% and the content was slightly decreased by the Zn treatment (3.1%) as compared to the control. The three microelements had different effects on the gentiopicroside content and appropriate microelement application could increase active ingredient content of gentian.展开更多
Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil polluti...Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.展开更多
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different...In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.展开更多
According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The r...According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The results show that the trace elements of mudstone samples from Tangjiatun Formation have the characteristics of high Th,V and Cu,but low Ba,Nb and Sr. The rare earth elements are characterized by significantly light and heavy rare earth elements differentiation,relative enrichment of light rare earth elements,and a negative anomaly of δEu. The Tangjiatun Formation belongs to a marine and delta sedimentary environment,and its tectonic setting is considered as a continental island arc environment.展开更多
Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application r...Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application results so far. Based on the 1 /100 000 stream sediment anomaly survey,the methods of 1 /20 000 soil geochemical measurement,trenching engineering on the earth's surface and 1 /10 000 IP intermediate gradient survey were all used to verify and decompose drainage anomalies,as well as to find and locate ore bodies. In this way,an effective,economical and quick prospecting method was concluded,which focuses on the middle and lower mountain forest swamp landscape in the northern part of Daxing'anling,and provides reference for the prospecting in the area.展开更多
Aims Species diversity–productivity relationships in natural ecosystems have been well documented in the literature.However,biotic and abiotic factors that determine their relationships are still poorly understood,es...Aims Species diversity–productivity relationships in natural ecosystems have been well documented in the literature.However,biotic and abiotic factors that determine their relationships are still poorly understood,especially under future climate change scenarios.Methods Randomized block factorial experiments were performed in three meadows along an elevational gradient on Yulong Mountain,China,where open-top chambers and urea fertilizer manipulations were used to simulate warming and nitrogen addition,respectively.Besides species diversity,we measured functional diversity based on five traits:plant height,specific leaf area and leaf carbon,nitrogen and phosphorus contents.Several abiotic factors relating to climate(air temperature and precipitation)and soil chemistry(pH,organic carbon concentration,total nitrogen concentration and phosphorus concentration)were also measured.Generalized linear mixed-effect models were used to investigate the responses of species diversity and productivity to elevation,warming,nitrogen addition and their interactions.The effects of biotic and abiotic factors on the direction and magnitude of their relationship were also assessed.Important Findings Species diversity decreased with increasing elevation and declined under warming at mid-elevation,while productivity decreased with increasing elevation.Functional richness,maximum air temperature,soil pH and their interactions showed strong but negative influences on the species diversity–productivity relationship;the relationship shifted from positive to neutral and then to slightly negative as these sources of variation increased.Our study highlights the negative effects of short-term warming on species diversity and emphasizes the importance of both biotic and abiotic drivers of species diversity–productivity relationships in mountain meadow communities.展开更多
The diurnal and seasonal variations of soil respiration (SR) were studied at a subtropical mangrove wetland in the Jiulong River Estuary from May 2010 to April 2011. SR rates were measured continuously from 08:00 t...The diurnal and seasonal variations of soil respiration (SR) were studied at a subtropical mangrove wetland in the Jiulong River Estuary from May 2010 to April 2011. SR rates were measured continuously from 08:00 to 06:00 local time (24-h time system) on July 8-9 and October 3-4, 2010; and January 15-16 and April 11-12, 2011. Similar patterns in the diurnal variation of SR were observed on October 2-3 and April 11-12, with the maximum values at 14:00 and the minimum at 00:00. However, the diurnal dynamics of SR on July 8-9, 2010 and January 15-16, 2011 showed different patterns, with the maximum values at 08:00-10:00 on above sampling dates and the minimum at 22:00 on July 8 and at 04:00 on January 16. The daily mean values of SR approximated to the values measured at 08:00. SR fluctuated with distinct seasonal patterns. The seasonal variation was characterized by a mono-peak pattern, with the highest rate (6.18 ~mol CO2 m-2 s-1) in July and the lowest rate (0.36 ~tmol CO2 m-2 s-1) in December. The results showed that the variation of SR in mangrove wetland was mainly controlled by soil temperature, and there was no significant correlation between SR and soil water content. It also implied that the model of SR in mangrove wetland should not only consider the effect of soil temperature, but also incorporate other factors, such as water level, precipitation, microbial activity and photosynthesis, which also could affect SR.展开更多
基金Project supported by the Key Technologies Research and Development Program of Heilongjiang Province (No. GC01C405-02).
文摘A field experiment of 2-year-old gentian (Gentiana manshurica Kitag.) with application of boron (B), zinc (Zn), and iron (Fe) in Taikang County, Heilongjiang Province, was conducted to study the effects of the three microelements on gentiopicroside content in the roots of gentian, uptake of these elements, and root dry weight as well as the ratio of root dry weight to fresh weight. Zinc sulfate, ferrous sulfate, and borax were split sprinkled on 2-year-old gentian on June 26, July 18, and August 25, 2002, with sprinkling water taken as a control. Compared with the control, applying B significantly increased (P 〈 0.05) the gentiopicroside content by 7.9%, and there was a highly significant increase of 22.4% (P 〈 0.01) in the root dry weight. Meanwhile, B content in the shoots of gentian gradually increased from the vegetative to the harvesting period, while Fe decreased at first and then increased. Fc treatment increased the gentiopicroside content only by 4.0% and the content was slightly decreased by the Zn treatment (3.1%) as compared to the control. The three microelements had different effects on the gentiopicroside content and appropriate microelement application could increase active ingredient content of gentian.
文摘Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.
基金Under the auspices of National Natural Science Foundation of China (No. 30470340)
文摘In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.
文摘According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The results show that the trace elements of mudstone samples from Tangjiatun Formation have the characteristics of high Th,V and Cu,but low Ba,Nb and Sr. The rare earth elements are characterized by significantly light and heavy rare earth elements differentiation,relative enrichment of light rare earth elements,and a negative anomaly of δEu. The Tangjiatun Formation belongs to a marine and delta sedimentary environment,and its tectonic setting is considered as a continental island arc environment.
基金Supported by project of Special Service Funds for Gold Geology of Gold Headquarters(2008,No.20130301)
文摘Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application results so far. Based on the 1 /100 000 stream sediment anomaly survey,the methods of 1 /20 000 soil geochemical measurement,trenching engineering on the earth's surface and 1 /10 000 IP intermediate gradient survey were all used to verify and decompose drainage anomalies,as well as to find and locate ore bodies. In this way,an effective,economical and quick prospecting method was concluded,which focuses on the middle and lower mountain forest swamp landscape in the northern part of Daxing'anling,and provides reference for the prospecting in the area.
基金This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31000000)the National Natural Science Foundation of China(31500335).
文摘Aims Species diversity–productivity relationships in natural ecosystems have been well documented in the literature.However,biotic and abiotic factors that determine their relationships are still poorly understood,especially under future climate change scenarios.Methods Randomized block factorial experiments were performed in three meadows along an elevational gradient on Yulong Mountain,China,where open-top chambers and urea fertilizer manipulations were used to simulate warming and nitrogen addition,respectively.Besides species diversity,we measured functional diversity based on five traits:plant height,specific leaf area and leaf carbon,nitrogen and phosphorus contents.Several abiotic factors relating to climate(air temperature and precipitation)and soil chemistry(pH,organic carbon concentration,total nitrogen concentration and phosphorus concentration)were also measured.Generalized linear mixed-effect models were used to investigate the responses of species diversity and productivity to elevation,warming,nitrogen addition and their interactions.The effects of biotic and abiotic factors on the direction and magnitude of their relationship were also assessed.Important Findings Species diversity decreased with increasing elevation and declined under warming at mid-elevation,while productivity decreased with increasing elevation.Functional richness,maximum air temperature,soil pH and their interactions showed strong but negative influences on the species diversity–productivity relationship;the relationship shifted from positive to neutral and then to slightly negative as these sources of variation increased.Our study highlights the negative effects of short-term warming on species diversity and emphasizes the importance of both biotic and abiotic drivers of species diversity–productivity relationships in mountain meadow communities.
基金Supported by the National Natural Science Foundation of China(No.41176092)
文摘The diurnal and seasonal variations of soil respiration (SR) were studied at a subtropical mangrove wetland in the Jiulong River Estuary from May 2010 to April 2011. SR rates were measured continuously from 08:00 to 06:00 local time (24-h time system) on July 8-9 and October 3-4, 2010; and January 15-16 and April 11-12, 2011. Similar patterns in the diurnal variation of SR were observed on October 2-3 and April 11-12, with the maximum values at 14:00 and the minimum at 00:00. However, the diurnal dynamics of SR on July 8-9, 2010 and January 15-16, 2011 showed different patterns, with the maximum values at 08:00-10:00 on above sampling dates and the minimum at 22:00 on July 8 and at 04:00 on January 16. The daily mean values of SR approximated to the values measured at 08:00. SR fluctuated with distinct seasonal patterns. The seasonal variation was characterized by a mono-peak pattern, with the highest rate (6.18 ~mol CO2 m-2 s-1) in July and the lowest rate (0.36 ~tmol CO2 m-2 s-1) in December. The results showed that the variation of SR in mangrove wetland was mainly controlled by soil temperature, and there was no significant correlation between SR and soil water content. It also implied that the model of SR in mangrove wetland should not only consider the effect of soil temperature, but also incorporate other factors, such as water level, precipitation, microbial activity and photosynthesis, which also could affect SR.